scholarly journals The complete chloroplast genome of Limonium tetragonum (Plumbaginaceae) isolated in Korea

2021 ◽  
Vol 51 (3) ◽  
pp. 337-344
Author(s):  
Yongsung KIM ◽  
Hong XI ◽  
Jongsun PARK

The chloroplast genome of Limonium tetragonum (Thunb.) Bullock, a halophytic species, was sequenced to understand genetic differences based on its geographical distribution. The cp genome of L. tetragonum was 154,689 bp long (GC ratio is 37.0%) and has four subregions: 84,572 bp of large single-copy (35.3%) and 12,813 bp of small singlecopy (31.5%) regions were separated by 28,562 bp of inverted repeat (40.9%) regions. It contained 128 genes (83 proteincoding genes, eight rRNAs, and 37 tRNAs). Thirty-five single-nucleotide polymorphisms and 33 INDEL regions (88 bp in length) were identified. Maximum-likelihood and Bayesian inference phylogenetic trees showed that L. tetragonum formed a sister group with L. aureum, which is incongruent with certain previous studies, including a phylogenetic analysis.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Junling Cao ◽  
Dan Jiang ◽  
Zhenyu Zhao ◽  
Subo Yuan ◽  
Yujun Zhang ◽  
...  

Chinese yam has been used both as a food and in traditional herbal medicine. Developing more effective genetic markers in this species is necessary to assess its genetic diversity and perform cultivar identification. In this study, new chloroplast genomic resources were developed using whole chloroplast genomes from six genotypes originating from different geographical locations. The Dioscorea polystachya chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of six D. polystachya chloroplast genomes revealed 141 single nucleotide polymorphisms (SNPs). Seventy simple sequence repeats (SSRs) were found in the six genotypes, including 24 polymorphic SSRs. Forty-three common indels and five small inversions were detected. Phylogenetic analysis based on the complete chloroplast genome provided the best resolution among the genotypes. Our evaluation of chloroplast genome resources among these genotypes led us to consider the complete chloroplast genome sequence of D. polystachya as a source of reliable and valuable molecular markers for revealing biogeographical structure and the extent of genetic variation in wild populations and for identifying different cultivars.


2021 ◽  
Vol 51 (3) ◽  
pp. 326-331
Author(s):  
Sung-Dug OH ◽  
Seong-Kon LEE ◽  
Doh-Won YUN ◽  
Hyeon-Jin SUN ◽  
Hong-Gyu KANG ◽  
...  

The complete chloroplast genome of Zoysia macrostachya Franch. & Sav. isolated in Korea is 135,902 bp long (GC ratio is 38.4%) and has four subregions; 81,546 bp of large single-copy (36.3%) and 12,586 bp of small single-copy (32.7%) regions are separated by 20,885 bp of inverted repeat (44.1%) regions, including 130 genes (83 protein-coding genes, eight rRNAs, and 39 tRNAs). Thirty-nine single nucleotide polymorphisms and 11 insertions and deletion (INDEL) regions were identified from two Z. macrostachya chloroplast genomes, the smallest among other Zoysia species. Phylogenetic trees show that two Z. macrostachya chloroplast genomes are clustered into a single clade. However, we found some incongruency with regard to the phylogenetic position of the Z. macrostachya clade. Our chloroplast genome provides insights into intraspecific variations and species delimitation issues pertaining to the Zoysia species.


2021 ◽  
Author(s):  
Jianjian Li ◽  
Junqin Zong ◽  
Haoran Wang ◽  
Jingjing Wang ◽  
Hailin Guo ◽  
...  

Abstract Background: Chloroplast (cp) genome sequence data could provide valuable information for molecular taxonomy and phylogenetic reconstruction among plant species and individuals. However, as one of the most important warm-season turfgrasses widely used in USA and China, cp genome characteristics and phylogenetic position of centipedegrass (Eremochloa ophiuroides) were poorly understood.Results: In this study, we determined the complete chloroplast genome sequences of E. ophiuroides using high-throughput Illumina sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in length, and has a typical quadripartite structure consisting of a pair of inverted repeat (IR) regions of 22,230 bp each separated by a large single copy (LSC) region of 82,081 bp and a small single copy (SSC) region of 12,566 bp. The nucleotide composition of E. ophiuroides cp genome is asymmetric with an overall A + T content of 61.60%. It encodes a total of 131 gene species, composed of 20 duplicated genes within the IR regions and 111 unique genes including 77 protein-coding genes (PCGs), 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes. Analysis of the repetitive sequences revealed that E. ophiuroides cp genome contains 51 tandem repeats including 29 forward, 20 palindromic and 2 reverse repeats, and 197 simple sequence repeats (SSRs) which were mainly composed of adenine (A) and thymine (T) bases. Comparison of the E. ophiuroides complete cp genome with the genomes of other seven Gramineae species showed a high degree of collinearity among Gramineae plants. Phylogenetic analysis showed that E. ophiuroides was closely related to E. ciliaris and E. eriopoda, and was placed in a clade with the two Eremochloa species and Mnesithea helferi within the subtribe Rottboelliinae, which clarified evolutionary status of E. ophiuroides in tribe Andropogoneae and also authenticated the current taxonomy of the tribe Andropogoneae.Conclusions: The present study provides the complete structure of the E. ophiuroides cp genome, and preliminarily ascertains the phylogenetic position of E. ophiuroides in tribe Andropogonodae. This will be of value to grass taxa identification, phylogenetic resolution, population structure and biodiversity, novel gene discovery and functional genomic studies for the genus Eremochloa.


2021 ◽  
Author(s):  
Junqin Zong ◽  
Haoran Wang ◽  
Jingjing Wang ◽  
Hailin Guo ◽  
Jingbo Chen ◽  
...  

Abstract Background: Chloroplast (cp) genome sequence data could provide valuable information for molecular taxonomy and phylogenetic reconstruction among plant species and individuals. However, as one of the most important warm-season turfgrasses widely used in USA and China, cp genome characteristics and phylogenetic position of centipedegrass (Eremochloa ophiuroides) were poorly understood.Results: In this study, we determined the complete chloroplast genome sequences of E. ophiuroides using high-throughput Illumina sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in length, and has a typical quadripartite structure consisting of a pair of inverted repeat (IR) regions of 22,230 bp each separated by a large single copy (LSC) region of 82,081 bp and a small single copy (SSC) region of 12,566 bp. The nucleotide composition of E. ophiuroides cp genome is asymmetric with an overall A + T content of 61.60%. It encodes a total of 131 gene species, composed of 20 duplicated genes within the IR regions and 111 unique genes including 77 protein-coding genes (PCGs), 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes. Analysis of the repetitive sequences revealed that E. ophiuroides cp genome contains 51 tandem repeats including 29 forward, 20 palindromic and 2 reverse repeats, and 197 simple sequence repeats (SSRs) which were mainly composed of adenine (A) and thymine (T) bases. Comparison of the E. ophiuroides complete cp genome with the genomes of other seven Gramineae species showed a high degree of collinearity among Gramineae plants. Phylogenetic analysis showed that E. ophiuroides was closely related to E. ciliaris and E. eriopoda, and was placed in a clade with the two Eremochloa species and Mnesithea helferi within the subtribe Rottboelliinae, which clarified evolutionary status of E. ophiuroides in tribe Andropogoneae and also authenticated the current taxonomy of the tribe Andropogoneae.Conclusions: The present study provides the complete structure of the E. ophiuroides cp genome, and preliminarily ascertains the phylogenetic position of E. ophiuroides in tribe Andropogonodae. This will be of value to grass taxa identification, phylogenetic resolution, population structure and biodiversity, novel gene discovery and functional genomic studies for the genus Eremochloa.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiu-jie Li ◽  
Na Su ◽  
Ling Zhang ◽  
Ru-chang Tong ◽  
Xiao-hui Zhang ◽  
...  

AbstractPulsatilla (Ranunculaceae) consists of about 40 species, and many of them have horticultural and/or medicinal value. However, it is difficult to recognize and identify wild Pulsatilla species. Universal molecular markers have been used to identify these species, but insufficient phylogenetic signal was available. Here, we compared the complete chloroplast genomes of seven Pulsatilla species. The chloroplast genomes of Pulsatilla were very similar and their length ranges from 161,501 to 162,669 bp. Eight highly variable regions and potential sources of molecular markers such as simple sequence repeats, large repeat sequences, and single nucleotide polymorphisms were identified, which are valuable for studies of infra- and inter-specific genetic diversity. The SNP number differentiating any two Pulsatilla chloroplast genomes ranged from 112 to 1214, and provided sufficient data for species delimitation. Phylogenetic trees based on different data sets were consistent with one another, with the IR, SSC regions and the barcode combination rbcL + matK + trnH-psbA produced slightly different results. Phylogenetic relationships within Pulsatilla were certainly resolved using the complete cp genome sequences. Overall, this study provides plentiful chloroplast genomic resources, which will be helpful to identify members of this taxonomically challenging group in further investigation.


2021 ◽  
Vol 51 (4) ◽  
pp. 345-352
Author(s):  
Sang-Tae KIM ◽  
Sang-Hun OH ◽  
Jongsun PARK

Diarthron linifolium Turcz. is an annual herb usually found in sandy soil or limestone areas. Plants in the genus Diarthron are known to have toxic chemicals that may, however, be potentially useful as an anticancer treatment. Diarthron linifolium is a unique species among the species of the genus distributed in Korea. Here, we determine the genetic variation of D. linifolium collected in Korea with a full chloroplast genome and investigate its evolutionary status by means of a phylogenetic analysis. The chloroplast genome of Korean D. linifolium has a total length of 172,644 bp with four subregions; 86,158 bp of large single copy and 2,858 bp of small single copy (SSC) regions are separated by 41,814 bp of inverted repeat (IR) regions. We found that the SSC region of D. linifolium is considerably short but that IRs are relatively long in comparison with other chloroplast genomes. Various simple sequence repeats were identified, and our nucleotide diversity analysis suggested potential marker regions near ndhF. The phylogenetic analysis indicated that D. linifolium from Korea is a sister to the group of Daphne species.


2019 ◽  
Author(s):  
James Worth ◽  
Luxian Liu ◽  
Nobuhiro Tomaru

This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome was a total of 158,247 bp in length containing 111 genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed between them and differing by 311 single nucleotide polymorphisms. The six most variable regions between the two genomes were the psbK-psbI, trnG-psbfM, trnV, rpl32, ndhD-psaC and ndhI-ndh regions. These highly variable chloroplast regions and the identification of 42 variable chloroplast SSRs found to be shared between the two species will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Kadriye Kahraman ◽  
Stuart James Lucas

Abstract Background Several bioinformatics tools have been designed for assembly and annotation of chloroplast (cp) genomes, making it difficult to decide which is most useful and applicable to a specific case. The increasing number of plant genomes provide an opportunity to accurately obtain cp genomes from whole genome shotgun (WGS) sequences. Due to the limited genetic information available for European hazelnut (Corylus avellana L.) and as part of a genome sequencing project, we analyzed the complete chloroplast genome of the cultivar ‘Tombul’ with multiple annotation tools. Results Three different annotation strategies were tested, and the complete cp genome of C. avellana cv Tombul was constructed, which was 161,667 bp in length, and had a typical quadripartite structure. A large single copy (LSC) region of 90,198 bp and a small single copy (SSC) region of 18,733 bp were separated by a pair of inverted repeat (IR) regions of 26,368 bp. In total, 125 predicted functional genes were annotated, including 76 protein-coding, 25 tRNA, and 4 rRNA unique genes. Comparative genomics indicated that the cp genome sequences were relatively highly conserved in species belonging to the same order. However, there were still some variations, especially in intergenic regions, that could be used as molecular markers for analyses of phylogeny and plant identification. Simple sequence repeat (SSR) analysis showed that there were 83 SSRs in the cp genome of cv Tombul. Phylogenetic analysis suggested that C. avellana cv Tombul had a close affinity to the sister group of C. fargesii and C. chinensis, and then a closer evolutionary relationship with Betulaceae family than other species of Fagales. Conclusion In this study, the complete cp genome of Corylus avellana cv Tombul, the most widely cultivated variety in Turkey, was obtained and annotated, and additionally phylogenetic relationships were predicted among Fagales species. Our results suggest a very accurate assembly of chloroplast genome from next generation whole genome shotgun (WGS) sequences. Enhancement of taxon sampling in Corylus species provide genomic insights into phylogenetic analyses. The nucleotide sequences of cv Tombul cp genomes can provide comprehensive genetic insight into the evolution of genus Corylus.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Samaila S. Yaradua ◽  
Dhafer A. Alzahrani ◽  
Enas J. Albokhary ◽  
Abidina Abba ◽  
Abubakar Bello

The complete chloroplast genome of J. flava, an endangered medicinal plant in Saudi Arabia, was sequenced and compared with cp genome of three Acanthaceae species to characterize the cp genome, identify SSRs, and also detect variation among the cp genomes of the sampled Acanthaceae. NOVOPlasty was used to assemble the complete chloroplast genome from the whole genome data. The cp genome of J. flava was 150, 888bp in length with GC content of 38.2%, and has a quadripartite structure; the genome harbors one pair of inverted repeat (IRa and IRb 25, 500bp each) separated by large single copy (LSC, 82, 995 bp) and small single copy (SSC, 16, 893 bp). There are 132 genes in the genome, which includes 80 protein coding genes, 30 tRNA, and 4 rRNA; 113 are unique while the remaining 19 are duplicated in IR regions. The repeat analysis indicates that the genome contained all types of repeats with palindromic occurring more frequently; the analysis also identified total number of 98 simple sequence repeats (SSR) of which majority are mononucleotides A/T and are found in the intergenic spacer. The comparative analysis with other cp genomes sampled indicated that the inverted repeat regions are conserved than the single copy regions and the noncoding regions show high rate of variation than the coding region. All the genomes have ndhF and ycf1 genes in the border junction of IRb and SSC. Sequence divergence analysis of the protein coding genes showed that seven genes (petB, atpF, psaI, rpl32, rpl16, ycf1, and clpP) are under positive selection. The phylogenetic analysis revealed that Justiceae is sister to Ruellieae. This study reported the first cp genome of the largest genus in Acanthaceae and provided resources for studying genetic diversity of J. flava as well as resolving phylogenetic relationships within the core Acanthaceae.


Sign in / Sign up

Export Citation Format

Share Document