Separation of Acetic Acid and Water Using Reverse Osmosis Membranes

Author(s):  
Nora Jullok ◽  
Boo Chie Hang

Reverse osmosis can potentially be used for separation of acetic acid from waste stream. However, the investigation on the separation of this binary mixture utilizing reverse osmosis is scarce. Thus, this study aims to evaluate the feasibility of lab-synthesized and commercially available reverse osmosis membranes to separate low acetic acid concentration from aqueous mixture. A commercially available AG membrane and three laboratory synthesized polysulfone (PSf) membranes were used in this work. Initial test for water permeation using dead end filtration found that 17.5 wt% PSf has the highest water permeability. As the polymer concentration decreases, the membrane porosity increases which decreases the resistance which enables the penetration of the permeant more easily through the membrane matrix resulting in higher water permeation when 17.5wt% PSf was used. Further modification by interfacial polymerization to form a thin polyamide layer on the porous support was seen to have had improved the membrane affinity towards water resulted in increased of permeation through the membrane matrix. However, the rejection was lower than that of the AG membrane. This indicates that, the increase in water permeation when 17.5wt%PSf was used is due to the high membrane porosity. This is evidence since 17.5wt%PSf has the highest water flux but lower acetic acid rejection compared to the commercial AG membrane. Low rejection of acetic acid when reverse osmosis membrane was applied indicates that other factor such as Donnan effect has to be further considered when synthesizing the membrane.

2017 ◽  
Vol 527 ◽  
pp. 121-128 ◽  
Author(s):  
Wansuk Choi ◽  
Sungkwon Jeon ◽  
Soon Jin Kwon ◽  
Hosik Park ◽  
You-In Park ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 40705-40710 ◽  
Author(s):  
Ruizhi Pang ◽  
Kaisong Zhang

A surface grafted PA RO membrane with 4-(2-hydroxyethyl)morpholine was fabricated to improve water flux.


2014 ◽  
Vol 931-932 ◽  
pp. 168-172 ◽  
Author(s):  
Asmadi Ali ◽  
Mohamad Awang ◽  
Ramli Mat ◽  
Anwar Johari ◽  
Mohd Johari Kamaruddin ◽  
...  

It is well known that membrane with hydrophobic property is a fouling membrane. Polysulfone (PSf) membrane has hydrophobic characteristic was blended with a hydrophilic polymer, cellulose acetate phthalate (CAP) in order to increase hydrophilicity property of pure PSf membrane. In this study, membrane casting solutions containing 17 wt% of polymer was prepared via wet phase inversion process. The pure PSf membrane was coded as PC-0. PSf/CAP blend membranes with blend composition of 95/5, 90/10, 85/15 and 80/20 wt% of total polymer concentration in the membrane casting solutions were marked as PC-5, PC-10, PC-15 and PC-20 respectively. All of the membranes were characterized in terms of pure water flux and permeability coefficient in order to study their hydrophilicity properties. The investigated results shows that increased of CAP composition in PSf blend membranes has increased pure water flux, permeability coefficient and porosity of the blend membrane which in turn formed membrane with anti-fouling property.


RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5648-5655
Author(s):  
Xinxia Tian ◽  
Zhen Cao ◽  
Jian Wang ◽  
Jiangrong Chen ◽  
Yangyang Wei

Thin film nanocomposite reverse osmosis membranes were prepared by dispersing 3-aminopropyltriethoxysilane modified hydrotalcite in aqueous solution and incorporating the nanoparticles in polyamide layer during interfacial polymerization process.


2016 ◽  
Vol 74 (7) ◽  
pp. 1619-1625 ◽  
Author(s):  
Fengjing Wu ◽  
Xiaojuan Liu ◽  
Chaktong Au

The polyamide reverse osmosis (RO) membranes were prepared through interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The use of dimethyl sulfoxide (DMSO) and glycerol as additives for the formation of thin-film composite (TFC) was investigated. We studied the effect of DMSO and glycerol addition on membrane property and RO performance. Microscopic morphology was examined by atomic force microscopy and scanning electron microscopy. The surface hydrophilicity was characterized on the basis of water contact angle and surface solid–liquid interfacial free energy (−ΔGSL). Water flux and salt rejection ability of the membranes prepared with or without the additives were evaluated by cross-flow RO tests. The results reveal that the addition of DMSO and glycerol strongly influences the property of the TFC RO membrane. Compared to the MPD/TMC membrane fabricated without DMSO and glycerol, the MPD/TMC/DMSO/glycerol membrane has a rougher surface and is more hydrophilic, showing smaller water contact angle and larger −ΔGSL value. Without decrease in salt rejection ability, the MPD/TMC/DMSO/glycerol membrane shows water flux significantly larger than that of the MPD/TMC membrane. The unique property of the MPD/TMC/DMSO/glycerol membrane is attributed to the cooperative effect of DMSO and glycerol on membrane structure during the interfacial polymerization process.


2018 ◽  
Vol 47 (9) ◽  
pp. 1210-1212 ◽  
Author(s):  
Feng-Tao Zheng ◽  
Kazuki Yamamoto ◽  
Masakoto Kanezashi ◽  
Takahiro Gunji ◽  
Toshinori Tsuru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document