Development of XY Micro-Position Stage Based on a Shape Memory Alloy

2021 ◽  
Vol 20 (2) ◽  
pp. 19-24
Author(s):  
Alaa AbuZaiter

This paper reports a novel monolithic two DoF micro-positioning stage using shape-memory-alloy (SMA) actuator. The design was fabricated in a one fabrication step and it comprises all actuation functions in a single piece of SMA. The square shaped actuator has dimensions of 10 mm × 10 mm × 0.25 mm. The device includes a moving stage in the center which is connected to four SMA springs to generate large displacement in two directions, x- and y- axes. The four SMA actuators underwent annealing process using internal joule heating by flowing electrical current through the springs. Each of SMA springs has been actuated individually by internal joule heating generated using an electrical current. The developed design has been simulated to verify thermal response and heat distribution. In addition, the micro-positioning stage was experimentally tested. The maximum displacement results of the stage are 1.1 mm and 1.1 mm along the directions of x- and y- axes, respectively. The developed micro-positioning stage has been successfully demonstrated to control the position of a small object for microscopic imaging applications.

10.5772/7228 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 29 ◽  
Author(s):  
Hu Bing-Shan ◽  
Wang Li-Wen ◽  
Fu Zhuang ◽  
Zhao Yan-zheng

Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA) are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME) extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.


Author(s):  
Veturia Chiroiu ◽  
Ligia Munteanu ◽  
Traian Badea ◽  
Cornel Mihai Nicolescu

The simulation of a flexible finger, actuated with the shape memory alloys (SMAs) artificial muscles, is presented in the paper. The finger is modeled as a cylindrically rod with three embedded NiTi wires in a n aluminum matrix. Forces between NiTi wires causes bending in any plane perpendicular to the longitudinal axis of the finger. The NiTi wires are heated above the austenitic start temperature by passing an electrical current, and the deflected wire tends to return to the initial configuration. Using characteristics of SMAs such as high damping capacity, super-elasticity, thermo-mechanical behavior and shape memory, the actuation for the finger is theoretically introduced and discussed.


Author(s):  
Hussein F. M. Ali ◽  
Youngshik Kim

Abstract In this paper, we developed two degree of freedom shape memory alloy (SMA) actuator using SMA springs. This module can be applied easily to various applications: device holder, artificial finger, grippes, fish robot, and many other biologically inspired applications, where small size and small wight of the actuator are very critical. This actuator is composed of two sets of SMA springs: one set is for the rotation around the X axis (roll angle) and the other set is for the rotation around the Y axis (pitch angle). Each set contains two elements: one SMA spring and one antagonistic SMA spring. We used an inertia sensor (IMU) and two potentiometers for angles feedback. The SMA actuator system is modeled mathematically and then tested experimentally in open-loop and closed-loop control. We designed and experimentally tuned a proportional integrator derivative (PID) controller to follow the set points and to track the desired trajectories. The main goal of the presented controller is to control roll and pitch angles simultaneously in order to satisfy set points and trajectories within the work space. The experimental results show that the two degree of freedom SMA actuator system follows the desired setpoints with acceptable rise time and overshoot.


2016 ◽  
Vol 248 ◽  
pp. 227-234
Author(s):  
Waldemar Rączka ◽  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Janusz Kowal

Shape Memory Alloy is a material used to designing actuators. These actuators have many advantages. They are light, strong and silent. They are building in laboratory and tested because beside advantages they have disadvantages too. SMA actuators have nonlinear characteristics with hysteresis loop.In the first part of the paper Shape Memory Alloys are shortly described. Next mathematical model was formulated. In the paper the Preisach model was developed. Discrete form of the model was considered and implemented. After parameter identification model was implemented in LabView. Tests of the model were conducted and results were worked. Obtained characteristics of the SMA actuator are shown in the paper. At the end of the paper the conclusions were formulated.


Author(s):  
B. Y. Ren ◽  
B. Q. Chen

The different Shape Memory Alloy (SMA) actuators have been widely used in the fields of smart structures. However, the accurate prediction of thermomechanical behavior of SMA actuators is very difficult due to the nonlinearity of inherence hysteresis of SMA. Therefore, the tracking control accuracy of SMA actuator is very important for the practical application of the SMA actuator. A dynamic hysteresis model of bias-type SMA actuator based on constitutive law developed by Brinson et al. and hysteresis model developed by Ikuta et al. is presented. The control systems composed of the Proportional Integral Derivative (PID) controller as well as a fuzzy controller or a fuzzy-PID composite controller for compensating the hysteresis is proposed. The effort of tracking control system is analyzed according to the simulation on the displacement of SMA actuator with the three kinds of controllers. The result can provide a reference for the application of SMA actuator in the fields of smart structures.


Author(s):  
Fei Yang ◽  
Jian Wang ◽  
Miaoling Han ◽  
Yifan Lu ◽  
Honghao Yue ◽  
...  

Abstract The traditional actuation systems such as combustion engines, electro motors, hydraulic and pneumatic machines, have several drawbacks: large volume and weight, huge energy consumption and high cost. To overcome these problems, this paper presents a novel large-stroke linear actuator actuated by shape memory alloy (SMA) wires. Multiple SMA wires are distributed in the space three-dimensionally and connected in series to achieve a larger stroke of the actuator. The tandem structure makes the SMA actuator easy to integrate into a narrow available space with dimension constraints. A theoretical model for bias element selection is developed through analysis of the driving paths. A prototype of the proposed SMA actuator is fabricated and corresponding experiments are conducted to verify the functions and performances. The critical working performances of the SMA actuator such as the output displacement, heating electric current, actuation time and reset time are obtained and investigated. The results prove that the proposed SMA actuator can output an ideal driving stroke and enough actuation force in confined space. This research provides design ideas for the large-stroke SMA actuator in more application fields.


2020 ◽  
Vol 186 ◽  
pp. 223-228 ◽  
Author(s):  
Abdul Karim ◽  
Chaoshuai Guan ◽  
Bin Chen ◽  
Yong Li ◽  
Junwei Zhang ◽  
...  

2015 ◽  
Author(s):  
Walber Medeiros Lima ◽  
Jackson de Brito Simões ◽  
Rodinei Medeiros Gomes ◽  
Cícero da Rocha Souto ◽  
Tadeu Antônio de Azevedo Melo ◽  
...  

Author(s):  
M Sreekumar ◽  
T Nagarajan ◽  
M Singaperumal

This paper presents the non-linear analysis of a shape memory alloy (SMA) actuated fully compliant spatial parallel mechanism. A compliant mechanism made of SMA wires as its actuators and SMA pipe as its structural member that exploits both the shape memory and superelastic effects is proposed and its static analysis using ANSYS is presented in this study. Finite element analysis in a multi-physics environment considering geometric and material non-linearities helps the user to analyse complex behaviour of a system. For the proposed mechanism, simulation results show: (a) 4 per cent strain for SMA actuation is optimal considering the geometric non-linearity of the proposed mechanism for obtaining maximum displacement; (b) buckling effect is less predominant while implementing the superelastic behaviour; and (c) the mechanism can be designed as a compliant device with one or more inflexion points by exploiting the superelasticity of the SMA pipe. The knowledge obtained from the simulation study could help in further miniaturization of the manipulator.


Sign in / Sign up

Export Citation Format

Share Document