scholarly journals Energy-Saving Potential of Daylighting in the Atria of Colleges in Najran University, Saudi Arabia

Author(s):  
Abdultawab Mohammed Qahtan ◽  
Diaeldin A Ebrahim ◽  
Hussein M. Ahmed

Daylighting is recognised as an effective strategy for enhancing visual comfort and reducing energy used for electric lighting. Najran University, Saudi Arabia, has 15 colleges for males and 10 colleges for females. Each college has several atria and courtyards for introducing daylighting into the hearts of college buildings. However, the electrical lights used in the colleges atria and linked corridors keep on all the daytime. This study is an attempt to investigate the daylight illuminance level and energy-saving potential on the atria and linked corridors when it incorporates a time-scheduling lighting control system. The field measurements were performed in the College of Applied Medical Sciences. The results indicate that daylight illuminance in the atrium spaces are abundant with an average illumination level on the atrium floor varying from 300 lux to 3 600 lux, depending on the time of the day. In the clear sky climate of Najran city throughout the year, the time-scheduling control system is effective and found to contribute to approximately 43 855.2 kWh of annual energy savings in electrical-lighting consumption in the present case study scenario. The total annual energy savings from all 25 colleges at Najran University is 1 096 380 kWh/year, which results in a cost saving of approximately 93,512.86 USD. There would be additional substantial savings from other atria and courtyards in all of the college buildings throughout the campus

2021 ◽  
pp. 1420326X2199241
Author(s):  
Hanlin Li ◽  
Dan Wu ◽  
Yanping Yuan ◽  
Lijun Zuo

In the past 30 years, tubular daylight guide systems (TDGSs) have become one of the most popular ways to transport outdoor natural light into the inner space in building design. However, tubular daylight guide systems are not widely used because of the lack of methods to evaluate methods on the suitability of the TDGSs. This study therefore summarizes the daylight performance metrics of TDGSs and presents the estimation methods in terms of field measurements, simulation and empirical formulae. This study focuses on the daylight performance and potential energy savings of TDGSs. Moreover, this study will be helpful for building designers to build healthy, comfortable and energy-saving indoor environment.


Author(s):  
Branislav Ftorek ◽  
Milan Saga ◽  
Pavol Orsansky ◽  
Jan Vittek ◽  
Peter Butko

Purpose The main purpose of this paper is to evaluate the two energy saving position control strategies for AC drives valid for a wide range of boundary conditions including an analysis of their energy expenses. Design/methodology/approach For energy demands analysis, the optimal energy control based on mechanical and electrical losses minimization is compared with the near-optimal one based on symmetrical trapezoidal speed profile. Both control strategies respect prescribed maneuver time and define acceleration profile for preplanned rest-to-rest maneuver. Findings Presented simulations confirm lower total energy expenditures of energy optimal control if compared with near-optimal one, but the differences are only small due to the fact that two energy saving strategies are compared. Research limitations/implications Developed overall control system consisting of energy saving profile generator, pre-compensator and position control system respecting principles of field-oriented control is capable to track precomputed state variables precisely. Practical implications Energy demands of both control strategies are verified and compared to simulations and preliminary experiments. The possibilities of energy savings were confirmed for both control strategies. Originality/value Experimental verification of designed control structure is sufficiently promising and confirmed assumed energy savings.


2021 ◽  
Author(s):  
◽  
Georgia Alexander

<p>For decades, studies have been suggesting the idea of occupancy sensors in intermittent use spaces for energy savings. This work investigates the potential energy savings of occupancy sensors in hallways, stairwells, seminar rooms and lavatories of an education building. Lighting is one of the largest consumers of energy in the building industry and these space types are often fully illuminated for long periods of vacancy. Lighting is for the user, not the building. Discussions centre around light use habits, energy saving behaviours and sensor technology such as time delay and daylight sensors. The experiment uses wireless light sensors and PIR sensors to measure light energy use and occupant use of 20 intermittent use spaces. A user survey was planned to run alongside the experiment to investigate user perceptions of changes in lighting but was discontinued due to unresolved software issues. Results of the experiment encouraged the use of occupancy sensors in intermittent use spaces. Lavatories attained highest energy saving potential 54%, seminar rooms highest annual cost savings per fitting $15.47 and highest annual energy savings 482kWh and hallways calculated the quickest payback of 8.6 years. Hallways, stairwells, seminar rooms and lavatories all offer potential for energy savings, supporting the theoretical ideas and success of occupancy sensors in intermittent use spaces.</p>


Author(s):  
N.Sujith Prasanna ◽  
Dr.J.Nagesh Kumar

Energy cost is significant in many of the manufacturing activities. The efficiency of energy use is quiet low as there are substantial visible and hidden losses. Visible losses can be easily identified and corrective action can be taken. However hidden and indirect losses form a sizeable portion of the losses. Identifying these losses is not easy and requires an integrated approach which includes thorough study of process, operations and their interactions with energy use. Industries across sectors have implemented lean management principles which target various wastes occurring in the plant. This paper discusses case studies which highlight the exploitation of lean tools as a means for unearthing hidden energy saving potential that often go unnoticed. In addition to the energy savings which results in improved profits and competitiveness, the approach also aids the industry to pursue a path of sustainable manufacturing.


2018 ◽  
Vol 164 ◽  
pp. 01007
Author(s):  
Dany Perwita Sari ◽  
Yun-shang Chiou

There are some architectural factors in the energy saving design of residential houses in Taiwan. In addition, in rural area, window glazing is a key factor to reducing electricity. For these purposes, a simulation model of exterior shading has been done in this study. Various types of shading devices have been analysed and compared in terms of energy savings. Simulation analysis by DesignBuilder reveals that shading devices has substantial impact to minimizing energy consumption. The results derived in this paper could provide useful suggestions for the shading design of residential buildings at rural area in Taiwan.


2020 ◽  
Vol 10 (12) ◽  
pp. 4336
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg ◽  
Tine Steen Larsen

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.


2016 ◽  
Vol 26 (6) ◽  
pp. 796-812 ◽  
Author(s):  
Heangwoo Lee ◽  
Sang-hoon Gim ◽  
Janghoo Seo ◽  
Yongseong Kim

Various ongoing studies regard light-shelves as one solution to the recent increase in lighting energy consumption. However, in previous light-shelf systems, the direction of incoming light was determined by external conditions, thereby limiting the efficiency of lighting energy saving. The purpose of the present study was to develop a movable light-shelf system with location-awareness technology and verify its performance. In this study, a full-scale testbed was established in order to test the proposed movable light-shelf system with location awareness as well as to verify its energy saving potential. The results were analysed and compared with the performances of previous fixed (Case 1) and movable (Case 2) light-shelf systems without location-awareness technology. The obtained results were as follows. (1) The proposed light-shelf system can respond to external conditions and to the location of the occupant by means of the control axis of the light-shelf module angle through modulation between the control axis of the angle of the previous light-shelf and the reflector of the light-shelf. (2) The proposed light-shelf system provides 90.0% and 86.6%/91.0% energy savings in comparison to Case 1 and Case 2, respectively.


2011 ◽  
Vol 280 ◽  
pp. 71-75
Author(s):  
Zhong Chao Zhao ◽  
Dong Hui Zhang ◽  
Yu Ping Chen

In this paper, the operation mechanism of combined air-conditioning system with temperature and humidity decoupled treatment (CACSTHDT) was presented, and the energy saving potential and economics of CACSTHDT were primarily analyzed through compared with a traditional air-conditioning system. The results indicated that CACSTHDT could save up to 28.64% energy consumption in comparison with a traditional air-conditioning system. The operating cost in one summer only was 71.36% of that cost of traditional air-conditioning system.


2021 ◽  
Author(s):  
◽  
Georgia Alexander

<p>For decades, studies have been suggesting the idea of occupancy sensors in intermittent use spaces for energy savings. This work investigates the potential energy savings of occupancy sensors in hallways, stairwells, seminar rooms and lavatories of an education building. Lighting is one of the largest consumers of energy in the building industry and these space types are often fully illuminated for long periods of vacancy. Lighting is for the user, not the building. Discussions centre around light use habits, energy saving behaviours and sensor technology such as time delay and daylight sensors. The experiment uses wireless light sensors and PIR sensors to measure light energy use and occupant use of 20 intermittent use spaces. A user survey was planned to run alongside the experiment to investigate user perceptions of changes in lighting but was discontinued due to unresolved software issues. Results of the experiment encouraged the use of occupancy sensors in intermittent use spaces. Lavatories attained highest energy saving potential 54%, seminar rooms highest annual cost savings per fitting $15.47 and highest annual energy savings 482kWh and hallways calculated the quickest payback of 8.6 years. Hallways, stairwells, seminar rooms and lavatories all offer potential for energy savings, supporting the theoretical ideas and success of occupancy sensors in intermittent use spaces.</p>


2020 ◽  
Vol 271 ◽  
pp. 115255 ◽  
Author(s):  
Raad Z. Homod ◽  
Khalaf S. Gaeid ◽  
Suroor M. Dawood ◽  
Alireza Hatami ◽  
Khairul S. Sahari

Sign in / Sign up

Export Citation Format

Share Document