On The Suitability Of Sequential Programming Languages

1994 ◽  
pp. 15-26
Author(s):  
Badri Abu Bakar

In designing sequential control systems, the programming language plays an important role for the success of system implementation. A Programmable Logic Controller (PLC) is normally equipped with several languages like Relay Ladder Logic, Statement List and others. Petri nets, Rule-based and State Transition methods are the language of future PLCs. The paper evaluates the performance of these languages especially for a system which exhibits a pattern in its operation. This is done on a case study based on a trainset problem with multiple-engine on the same track. It will demonstrate the strengths and weaknesses of each technique and it will serve as a basis of favouring one or the other for certain applications in a sequential control system. Through this paper, we can see various techniques on the problem to show that each technique has its own strengths and weaknesses. In a complex operation with a pattern, the rule-based technique is the well-suited technique. Similarly, if the system uses complementaries and needs exception handling rule-based is the best technique to be employed. Unlike Petri nets, State Transition Matrix (STM), ladder logic and others, the rule-based technique does not relate to dimensionality of the problem and therefore system growth and modification is easily coped with. The Petri net technique is very good at parallel subsequences but falls down when much branching and inverse places of action are needed in the system. STM on the other hand is good at much branching and giving system options clearly and unambiguously so long as the matrix is manageable. The STM technique becomes less helpful when the matrix grows. Although both Petri nets and STM are easily understood and readily communicable, their solutions are implementation specific; system changes and annexation would mean reprogramming almost from scratch. Various functions have certain peculiarities that make them unsuitable to be programmed in a particular method. Therefore, the choice of a technique suitable for a particular problem is still the best method of designing sequential control applications. Failure to program these operations with the most suitable technique will result in a difficult and awkward solution with the consequent penalty associated with undue complexity in terms of error-checking and implementation.

Author(s):  
Д.В. Леонтьев ◽  
Д.С. Одякова ◽  
В. Парахин ◽  
Д.И. Харитонов

Предложен подход к моделированию обработки исключительных ситуаций в императивных программах. Рассмотрены проблематика использования исключительных ситуаций в программах, общий подход к автоматическому построению моделей программ, описан минимальный набор шаблонов семантических конструкций, необходимый для построения моделей императивных программ. В качестве примера описан процесс моделирования небольшой программы и приведена ее результирующая модель в композициональном виде. The purpose of the article is to propose an approach to the automatic generation of models of imperative programs with exceptions from the source code. Methodology. The approach defines consecutive transformations of the program beginning from the source code to the parsing tree of the program, then to an abstract semantic graph and finally to a compositional model in terms of Petri nets. Transformations are based on a set of formal principles and relations and can be performed without human intervention purely algorithmically. To build a model from the program abstract semantic graph, templates and composition rules are used. Templates describe in terms of Petri net the basic constructions of imperative programming languages: expressions, branching, loops, choice and function call. Findings. A set of templates for modelling the exception handling mechanism is described. This set includes templates for the try and catch blocks describing the processing of the exception in local places of the program, the throw operator to signal the exception, and the operator of the function call with exceptions. Оriginality/value. The article demonstrates that the proposed set of templates allows building a complete model of the program with exceptions, consisting of several functions. The resulting program model makes it possible to analyze the program behavior by standard for Petri nets formal methods. In particular, a possibility of an abnormal termination due to an exceptional situation can be validated and where each particular exception is handled as well as what exceptions are handled in a particular catch block.


2014 ◽  
Vol 6 (2) ◽  
pp. 46-51
Author(s):  
Galang Amanda Dwi P. ◽  
Gregorius Edwadr ◽  
Agus Zainal Arifin

Nowadays, a large number of information can not be reached by the reader because of the misclassification of text-based documents. The misclassified data can also make the readers obtain the wrong information. The method which is proposed by this paper is aiming to classify the documents into the correct group.  Each document will have a membership value in several different classes. The method will be used to find the degree of similarity between the two documents is the semantic similarity. In fact, there is no document that doesn’t have a relationship with the other but their relationship might be close to 0. This method calculates the similarity between two documents by taking into account the level of similarity of words and their synonyms. After all inter-document similarity values obtained, a matrix will be created. The matrix is then used as a semi-supervised factor. The output of this method is the value of the membership of each document, which must be one of the greatest membership value for each document which indicates where the documents are grouped. Classification result computed by the method shows a good value which is 90 %. Index Terms - Fuzzy co-clustering, Heuristic, Semantica Similiarity, Semi-supervised learning.


2010 ◽  
Vol 39 ◽  
pp. 436-440
Author(s):  
Zhi Ming Qu

In recent years, much research has been devoted to the refinement of IPv6; on the other hand, few have investigated the confusing unification of interrupts and Internet QoS. In this position paper, it demonstrates the emulation of interrupts. In order to overcome this quagmire, a novel system is presented for the intuitive unification of expert systems and massive multiplayer online role-playing games. It is concluded that erasure coding can be verified to make heterogeneous, interposable, and event-driven, which is proved to be applicable.


1998 ◽  
Vol 08 (01) ◽  
pp. 21-66 ◽  
Author(s):  
W. M. P. VAN DER AALST

Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.


1979 ◽  
Vol 58 (2_suppl) ◽  
pp. 922-929 ◽  
Author(s):  
M.U. Nylen

The literature on the ultrastructural morphology of the enamel matrix and its relationship to the crystals is reviewed. Two morphological entities of the matrix are discussed: One is the so-called stippled material which may be the initial cell product; the other, variously described as fibrillar, lamellar, tubular or helical, is thought by many to play a crucial role in nucleation and orientation of the crystals. A number of observations, however, suggest that the latter structures form secondarily to the crystals and that in reality they represent organic material adsorbed to the crystal surface and maintained as independent structures upon removal of the mineral. The need for additional studies is stressed including systematic studies of interactions between constituents of the organic matrix and the apatite crystals.


1991 ◽  
Vol 113 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Hisatsune ◽  
T. Tabata ◽  
S. Masaki

Axisymmetric deformation of anisotropic porous materials caused by geometry of pores or by distribution of pores is analyzed. Two models of the materials are proposed: one consists of spherical cells each of which has a concentric ellipsoidal pore; and the other consists of ellipsoidal cells each of which has a concentric spherical pore. The velocity field in the matrix is assumed and the upper bound approach is attempted. Yield criteria are expressed as ellipses on the σm σ3 plane which are longer in longitudinal direction with increasing anisotropy and smaller with increasing volume fraction of the pore. Furthermore, the axes rotate about the origin at an angle α from the σm-axis, while the axis for isotropic porous materials is on the σm-axis.


2021 ◽  
Vol 20 (01) ◽  
pp. 2150013
Author(s):  
Mohammed Abu-Arqoub ◽  
Wael Hadi ◽  
Abdelraouf Ishtaiwi

Associative Classification (AC) classifiers are of substantial interest due to their ability to be utilised for mining vast sets of rules. However, researchers over the decades have shown that a large number of these mined rules are trivial, irrelevant, redundant, and sometimes harmful, as they can cause decision-making bias. Accordingly, in our paper, we address these challenges and propose a new novel AC approach based on the RIPPER algorithm, which we refer to as ACRIPPER. Our new approach combines the strength of the RIPPER algorithm with the classical AC method, in order to achieve: (1) a reduction in the number of rules being mined, especially those rules that are largely insignificant; (2) a high level of integration among the confidence and support of the rules on one hand and the class imbalance level in the prediction phase on the other hand. Our experimental results, using 20 different well-known datasets, reveal that the proposed ACRIPPER significantly outperforms the well-known rule-based algorithms RIPPER and J48. Moreover, ACRIPPER significantly outperforms the current AC-based algorithms CBA, CMAR, ECBA, FACA, and ACPRISM. Finally, ACRIPPER is found to achieve the best average and ranking on the accuracy measure.


Author(s):  
Hélène Béïnoglou

In this article, I will focus on highly conflictual couples with extensive emotional deprivation and unresolved trauma, which prevents them from developing healthy romantic relationships and overcoming the challenges entailed in any intimate attachment. I will describe how everyday interactions are experienced as threatening or even lethal movements between the partners. The question which arises in the psychoanalytical therapeutic process is how to help the couple tolerate the sensory reminders of the unresolved trauma as a necessary precursor to any process of symbolisation. In order to provide a safe enough therapeutic attachment bond, extensive time is dedicated to the emotional experience of self and the other in the here-and-now of the session, which validates the emotional experience of the couple as well as contains it. The therapy focuses on the transferential and countertransferential movements inspired by the matrix of the victim, abuser, and uninvolved witness (Davies & Frawley, 1994) to elaborate the intertwining of the unresolved trauma with the couple’s form of attachment. In order to illustrate my argument, I present two examples: one from a fictional narration and another from my clinical work.


Sign in / Sign up

Export Citation Format

Share Document