Potential of Nanofiltration Membrane in Groundwater Treatment for Drinking Water Resources

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Norherdawati Kasim ◽  
Abdul Wahab Mohammad

Groundwater in Malaysia has become an alternative water resouces for daily needs. However, the presence of iron and manganese has been the major problem that caused the water unsuitable for drinking due to reddish colour and bad taste. Therefore, groundwater should be well treated from any hazardous metal before consumption. A dead-end stirred cell was used to investigate the ability of commercial NF membrane in removal of Fe to acceptable level for drinking water. Removal up to 99% for 10 mg/L iron solution at pH9.4 with low pressure of 2 bar was achieved. Further investigation for higher feed concentration is suggested in order to achieve permeate concentration below than 0.3 mg Fe/L. All findings indicated that nanofiltration is a promising technology for groundwater treatment.

2021 ◽  
Vol 317 ◽  
pp. 283-290
Author(s):  
Norherdawati Kasim ◽  
Ebrahim Mahmoudi ◽  
Abdul Wahab Mohammad ◽  
Siti Rozaimah Sheikh Abdullah

The aim of this research is to investigate the removal behavior of iron and manganese that naturally exist as divalent ions in groundwater by using nanofiltration membranes. The main focus of this study is to better understand the effect of applied pressures during the rejection of these metallic ions from synthetic groundwater in order to achieve drinking water standard. Polyamide and polypiperazine amide nanofiltration membranes denoted as PA-NF and PPA-NF were selected to investigate the iron and manganese rejection at low applied pressures (1-5 bar). In single solute solution with feed concentration at 10 mg/L and initial pH of 6.8 ± 0.5, the rejection of iron was ≥96% by PA-NF membrane at applied pressure of 2 bar. However, the rejection percentage by PPA-NF was 86.6% whereby this membrane unable to remove iron to the allowable drinking water standard. The rejection of manganese with single solute at concentration of 1 mg/L with initial pH of 6.8 ± 0.5 by using the PA-NF membrane was ≥98% and almost all of dissolved manganese were rejected at 5 bar. However, manganese removal by PPA-NF membrane was found less than 70% for all of the applied pressures. Findings from this work showed that the removal of iron and manganese were dependent on the applied pressures. PA-NF membrane able to remove both metallic ions that comply with the drinking water standard. The increased of applied pressure contributed to concentration polarization effect on the membrane surfaces leading to a decrease in solute rejection by decreasing the charge effect mainly for the iron removal from synthetic groundwater.


2012 ◽  
Author(s):  
Darunee Bhongsuwan ◽  
Tripob Bhogsuwan ◽  
Narumol Buangam ◽  
Waneerat Mangkalatas

Cellulose acetate (CA) membrane was produced from CA powder, formamid, and acetone. Annealing temperature of 80C and evaporation times of 30, 60, and 90 seconds were chosen in preparation of the CA membranes named R530, R560, and R590, respectively. The membranes were tested using a dead-end stirred cell for filtration of NaCl salt, iron, manganese, and arsenic in the laboratory-prepared water and groundwater. Results of the tests using a membrane R530 at 400 psi showed, that the rejection efficiencies for salt, iron, and manganese in laboratory-prepared water with 3000 ppm NaCl , 2.0 ppm Fe, and 2.0 ppm Mn were 87%, 99%, and 92%, respectively, with a permeate flux of 21 Lm-2hr-1. Tests for the groundwater containing 4815 ppm NaCl and 5.48 ppm Mn without acid treatment showed that membrane R530 gave the flux and rejection for salt and manganese at 24 Lm-2hr-1, 85% and 98%, and for iron and manganese at 21 Lm-2hr-1, 93% and 99%, respectively. In the filtration of arsenic, the prepared membrane had a As rejection of 68 - 70% at 300 and 400 psi when the feed was the laboratory prepared 1 ppm As+3 contaminated water but it was found to be more than 82 - 96% when the feed was a natural water. This is probably because the prepared membrane had a higher rejection efficiency for As+5 ions than As+3 ions. Ion selective capability of the CA membrane shows the potential to use the membrane in filtration of selective ions. Key words: Cellulose acetate membrane, reverse osmosis, nano-filtration, contaminated water, dead-end stirred cell


2021 ◽  
Vol 263 ◽  
pp. 04049
Author(s):  
Zhanna Govorova ◽  
Olga Zubareva ◽  
Vasiliy Semenovykh ◽  
Ekaterina Muraveva ◽  
Olga Yankovskaya

The main contaminants of groundwater are iron and manganese compounds, increased hardness, which are removed at groundwater conditioning stations. The article reviews the existing station that was built according to a conventional design and uses the method of simplified aeration with the following filtration through high-silica sand. Assessment of the technical condition of the station showed that the elements of the building are limited to work The filters are in poor condition, some of the filters are out of service, there are concrete corrosion, destruction of finishing layers in filters’ building, internal and external corrosion of metallic pipelines and valves, which depend on he quality of transported water. Wear of the technological pipelines is over 80%. Analysis of the efficiency of the station showed that it operates at 50% capacity and at the same time does not provide standards for the hardness of drinking water. Water consumption for the station’s own needs is 1.5 times higher than it was designed. There are no processing and reusing facilities for flushing water. Results of the technical and technological inspection of the station showed that there is a need for immediate modernization of the station including the improvement of the groundwater purification technology and bringing he quality to the standards for drinking water.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 860
Author(s):  
Konstantinos Simeonidis ◽  
Manassis Mitrakas

Elevated concentrations of heavy metals in drinking water resources and industrial or urban wastewater pose a serious threat to human health and the equilibrium of ecosystems [...]


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Sarah E. Hale ◽  
Hans Peter H. Arp ◽  
Ivo Schliebner ◽  
Michael Neumann

Abstract Background Under the EU chemicals regulation REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals EC 1907/2006), registrants are not obliged to provide information related to intrinsic substance properties for substances that pose a threat to the drinking water resources. In 2019, perfluorobutane sulfonic acid (PFBS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoic acid (HFPO-DA trade name GenX) were demonstrated to have an equivalent level of concern (ELoC) to persistent, bioaccumulative and toxic or very persistent and very bioaccumulative (PBT/vPvB) substances owing to their persistent, mobile and toxic (PMT) substance properties and very persistent and very mobile (vPvM) substance properties, respectively. They were both subsequently identified as substances of very high concern (SVHC) applying Article 57(f) in REACH. This work follows up on this regulatory decision by presenting a science based, conceptual level comparison that all PMT/vPvM substances pose an ELoC to PBT/vPvB substances. Using the two cases named above, as well as 1,4-dioxane, 16 categories were developed to evaluate a) serious effects on human health, b) serious effects on the environment and c) additional effects. 1,4-dioxane has recently been proposed to be classified as Carcinogenic 1B by the Committee for Risk Assessment (RAC). The aim was to enable an objective and scientifically justified conclusion that these classes of substances have an equivalent level of concern for the environment and human health. Results In all of the categories related to human health, the environment and other effects, the PMT/vPvM case study substances exhibited comparable effects to PBT/vPvB substances. A difference in the human and environmental exposure pathways of PMT/vPvM and PBT/vPvB substances exists as they vary temporally and spatially. However, effects and impacts are similar, with PMT/vPvM substances potentially accumulating in (semi-)closed drinking water cycles and pristine aquatic environments, and PBT/vPvB substances accumulating in humans and the food chain. Both PMT/vPvM and PBT/vPvB substances share the common difficulty that long term and long-range transport and risk of exposure is very difficult to determine in advance and with sufficient accuracy. Conclusion The registration process of substances under REACH should reflect that PMT/vPvM substances pose an equivalent level of concern to PBT/vPvB substances.


2011 ◽  
Vol 84 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Kristen E. Gibson ◽  
Yayi Guo ◽  
James T. Schissler ◽  
Melissa C. Opryszko ◽  
Kellogg J. Schwab

2015 ◽  
Vol 15 (6) ◽  
pp. 1405-1413 ◽  
Author(s):  
Ivan Muñoz ◽  
Erik de Vries ◽  
Janneke Wittebol ◽  
Jens Aamand

A prospective environmental life cycle assessment (LCA) and financial cost assessment is performed to the application of bioaugmentation to sand filters in Danish waterworks, to remove 2,6-dichlorobenzamide (BAM) from drinking water resources. Based on pilot-scale and laboratory-scale data, we compare bioaugmentation to current alternative strategies, namely granular activated carbon (GAC) adsorption, and well re-location. Both assessments identified well re-location as the least preferred option, however, this result is very sensitive to the distance from the waterworks to the new well. When bioaugmentation is compared to GAC, the former has a lower impact in 13 impact categories, but if immobilized bacteria are used, the impacts are higher than for GAC in all impact categories. On the other hand, from a cost perspective bioaugmentation appears to be preferable to GAC only if immobilized bacteria are used.


Sign in / Sign up

Export Citation Format

Share Document