Study of the Effect of Spacer Orientation and Shape in Membrane Feed Channel using CFD Modelling

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
H. C. Teoh ◽  
S. O. Lai

Computational fluids dynamics (CFD) modelling has been carried out for a spacer-filled membrane channel using ANSYS FLUENT 14.0. The effect of spacer angles relative to the feed flow direction and different spacer shape combinations on velocity magnitude, wall shear stress, pressure drop and power number were investigated. From the results, spacer angle of 63.565° is the best orientation as it can generate the highest shear stress and reasonably lower power number compared to other spacer angles. Although the combinations of spacer shape did not significantly improve the average wall shear stress, it helped in reducing the pressure drop of the channel. The combination of triangular and circular spacers provided lower Power number, and hence lower energy consumption was required compared to pure triangular spacer. The current results indicated that a combination of triangular and circular spacers can be employed to offer better saving in energy consumption.

Author(s):  
Karol Calò ◽  
Giuseppe De Nisco ◽  
Diego Gallo ◽  
Claudio Chiastra ◽  
Ayla Hoogendoorn ◽  
...  

Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress–based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.


Author(s):  
Navid Freidoonimehr ◽  
Rey Chin ◽  
Anthony C. Zander ◽  
Maziar Arjomandi

Abstract Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether the modelling the temporal variations of the coronary arteries is needed for the investigation of the hemodynamics specifically in time critical applications such as a clinical environment. The numerical modellings in the literature which model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5\% deviation of the time-averaged pressure drop and wall shear stress values and also about 20\% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for the future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected, while providing a reliable estimation of hemodynamic parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Mongkol Kaewbumrung ◽  
Somsak Orankitjaroen ◽  
Pichit Boonkrong ◽  
Buraskorn Nuntadilok ◽  
Benchawan Wiwatanapataphee

A mathematical model of dispersed bioparticle-blood flow through the stenosed coronary artery under the pulsatile boundary conditions is proposed. Blood is assumed to be an incompressible non-Newtonian fluid and its flow is considered as turbulence described by the Reynolds-averaged Navier-Stokes equations. Bioparticles are assumed to be spherical shape with the same density as blood, and their translation and rotational motions are governed by Newtonian equations. Impact of particle movement on the blood velocity, the pressure distribution, and the wall shear stress distribution in three different severity degrees of stenosis including 25%, 50%, and 75% are investigated through the numerical simulation using ANSYS 18.2. Increasing degree of stenosis severity results in higher values of the pressure drop and wall shear stresses. The higher level of bioparticle motion directly varies with the pressure drop and wall shear stress. The area of coronary artery with higher density of bioparticles also presents the higher wall shear stress.


Author(s):  
Leonie Rouleau ◽  
Monica Farcas ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard Leask

Endothelial cell (EC) dysfunction has been linked to atherosclerosis through their response to hemodynamic forces. Flow in stenotic vessels creates complex spatial gradients in wall shear stress. In vitro studies examining the effect of shear stress on endothelial cells have used unrealistic and simplified models, which cannot reproduce physiological conditions. The objective of this study was to expose endothelial cells to the complex shear shear pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flow in straight dynamic controls and in idealized asymmetric stenosis models. Cells subjected to 1D flow aligned with flow direction and had a spindle-like shape when compared to static controls. Endothelial cell morphology was noticeable different in the regions with a spatial gradient in wall shear stress, being more randomly oriented and of cobblestone shape. This occurred despite the presence of an increased magnitude in shear stress. No other study to date has described this morphology in the presence of a positive wall shear stress gradient or gradient of significant shear magnitude. This technique provides a more realistic model to study endothelial cell response to spatial and temporal shear stress gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2017 ◽  
Vol 14 (1) ◽  
pp. 39-46 ◽  
Author(s):  
K. Maruthi Prasad ◽  
S. Thulluri ◽  
M. V. Phanikumari

The effects of an overlapping stenosis on blood flow characteristics in an artery have been studied. Blood has been represented by a couple stress fluid. The flow equations have been linearised and the expressions for pressure drop, resistance to the flow and wall shear stress have been derived. The results are shown graphically. It is observed that the resistance to the flow, pressure drop and wall shear stress increases with height and length of the stenosis. And it is noticed that the resistance to the flow and pressure drop decreases with couple stress fluid parameters. But wall shear stress increases with couple stress fluid parameters.


Author(s):  
Ravi Arora ◽  
Eric Daymo ◽  
Anna Lee Tonkovich ◽  
Laura Silva ◽  
Rick Stevenson ◽  
...  

Emulsion formation within microchannels enables smaller mean droplet sizes for new commercial applications such as personal care, medical, and food products among others. When operated at a high flow rate per channel, the resulting emulsion mixture creates a high wall shear stress along the walls of the narrow microchannel. This high fluid-wall shear stress of continuous phase material past a dispersed phase, introduced through a permeable wall, enables the formation of small emulsion droplets — one drop at a time. A challenge to the scale-up of this technology has been to understand the behavior of non-Newtonian fluids under high wall shear stress. A further complication has been the change in fluid properties with composition along the length of the microchannel as the emulsion is formed. Many of the predictive models for non-Newtonian emulsion fluids were derived at low shear rates and have shown excellent agreement between predictions and experiments. The power law relationship for non-Newtonian emulsions obtained at low shear rates breaks down under the high shear environment created by high throughputs in small microchannels. The small dimensions create higher velocity gradients at the wall, resulting in larger apparent viscosity. Extrapolation of the power law obtained in low shear environment may lead to under-predictions of pressure drop in microchannels. This work describes the results of a shear-thinning fluid that generates larger pressure drop in a high-wall shear stress microchannel environment than predicted from traditional correlations.


Hydrodynamic shear force along the bottom microchannel wall has been utilized in cell adhesion studies to detach cells in microfluidic channels. Due to the small dimensions of microfluidic channels, the shear stress produced in a conventional microchannel is dependent mainly on the fluid velocity and channel height. The wall shear force magnitude increases as the channel height is reduced. However, a reduced channel height decreases the sample volume to be contained in the fluidic channel and also increases the pressure drop significantly which may fail the fluidic device. In this study, a novel microchannel with a trapezoidal structure was investigated using computational fluid dynamics simulations. The key fluidic properties, including wall shear stress, sample volume, and pressure drop of the trapezoidal microchannel are compared with those of a conventional straight channel with a reduced channel height. We found the trapezoidal structure produces a wall shear stress of 5 Pa in the region of interest similar to that of the straight channel with a small channel height (50 μm) while having less than 30 percent pressure drop. Additionally, the pressure drop can be reduced by modifying the geometry of the trapezoidal channel to minimize pressure loss.


2020 ◽  
Vol 88 (2) ◽  
Author(s):  
Yuxi Jia ◽  
Kumaradevan Punithakumar ◽  
Michelle Noga ◽  
Arman Hemmati

Abstract The characteristics of blood flow in an abnormal pediatric aorta with an aortic coarctation and aortic arch narrowing are examined using direct numerical simulations and patient-specific boundary conditions. The blood flow simulations of a normal pediatric aorta are used for comparison to identify unique flow features resulting from the aorta geometrical anomalies. Despite flow similarities compared to the flow in normal aortic arch, the flow velocity decreases with an increase in pressure, wall shear stress, and vorticity around both anomalies. The presence of wall shear stresses in the trailing indentation region and aorta coarctation opposing the primary flow direction suggests that there exist recirculation zones in the aorta. The discrepancy in relative flowrates through the top and bottom of the aorta outlets, and the pressure drop across the coarctation, implies a high blood pressure in the upper body and a low blood pressure in the lower body. We propose using flow manipulators prior to the aortic arch and coarctation to lower the wall shear stress, while making the recirculation regions both smaller and weaker. The flow manipulators form a guide to divert and correct blood flow in critical regions of the aorta with anomalies.


2019 ◽  
Vol 29 (06) ◽  
pp. 768-776
Author(s):  
Martin Guillot ◽  
Robert Ascuitto ◽  
Nancy Ross-Ascuitto ◽  
Kiran Mallula ◽  
Ernest Siwik

AbstractBackground:Transcatheter stent implantation has been employed to treat re-coarctation of the aorta in adolescents and young adults. The aim of this work is to use computational fluid dynamics to characterise haemodynamics associated with re-coarctation involving an aneurysmal ductal ampulla and aortic isthmus narrowing, which created minimal pressure drop, and to incorporate computational fluid dynamics’s findings into decision-making concerning catheter-directed treatment.Methods:Computational fluid dynamics permits numerically solving the Navier–Stokes equations governing pulsatile flow in the aorta, based on patient-specific data. We determined flow-velocity fields, wall shear stresses, oscillatory shear indices, and particle stream traces, which cannot be ascertained from catheterisation data or magnetic resonance imaging.Results:Computational fluid dynamics showed that, as flow entered the isthmus, it separated from the aortic wall, and created vortices leading to re-circulating low-velocity flow that induced low and multidirectional wall shear stress, which could sustain platelet-mediated thrombus formation in the ampulla. In contrast, as flow exited the isthmus, it created a jet leading to high-velocity flow that induced high and unidirectional wall shear stress, which could eventually undermine the wall of the descending aorta.Summary:We used computational fluid dynamics to study re-coarctation involving an aneurysmal ductal ampulla and aortic isthmus narrowing. Despite minimal pressure drop, computational fluid dynamics identified flow patterns that would place the patient at risk for: thromboembolic events, rupture of the ampulla, and impaired descending aortic wall integrity. Thus, catheter-directed stenting was undertaken and proved successful. Computational fluid dynamics yielded important information, not only about the case presented, but about the complementary role it can serve in the management of patients with complex aortic arch obstruction.


2021 ◽  
Author(s):  
Shigehiro Hashimoto ◽  
Takashi Yokomizo

Abstract How does the group of cells make orientation perpendicular to the flow direction? How does contact with an adjacent cell affect the orientation of the cell? The orientation of a cell according to the neighbor cell under shear flow fields has been traced in vitro. A Couette type flow device with parallel discs was manufactured for the cell culture under the controlled constant wall shear stress. Cells (C2C12: mouse myoblast cell line) were cultured on the lower disc while applying the shear flow in the medium by the upper rotating disc. After culture for 24 hours without flow for adhesion of cells, 2 Pa of the constant wall shear stress was continuously applied in the incubator for 7 days. The behavior of each cell was traced by time-lapse images observed by an inverted phase contrast microscope placed in an incubator. The experiment shows the following results quantitatively by parameters: the contact ratio, and the angle between major axes of cells approximated to ellipsoids. As the ratio of the contact length with the adjacent cell to the pericellular length increases in the two-dimensional projection images, the adjacent cells tend to be oriented in parallel with each other.


Sign in / Sign up

Export Citation Format

Share Document