GENERATION OF A PAIR OF SURFACE TIME HISTORIES FOR JAKARTA USED FOR EARTHQUAKE RESISTANCE DESIGN OF INFRASTRUCTURES

2015 ◽  
Vol 77 (11) ◽  
Author(s):  
B.M. Hutapea ◽  
M. Asrurifak ◽  
Hendriyawan Hendriyawan ◽  
Masyhur Irsyam

It is not the earthquake but the collapse of the building and infrastructure that will cause the damage and the loss of human lives. To mitigate these hazards, the building and infrastructure need to be designed such that will not collapse due to earthquake. This paper presents the procedure for generating time histories at ground surface for Jakarta area. Required data to generate these modified time histories were extracted from the Team for Revision of Seismic Hazard Maps of Indonesia 2010. The results are used as input motions in dynamic time history analysis for predicting earthquake design loads for infrastructures, such as bridges such that those structures can be designed to bear the impact of an earthquake and prevent collapse

2012 ◽  
Vol 446-449 ◽  
pp. 751-755 ◽  
Author(s):  
Meng Hong Wang ◽  
Fei Da Song ◽  
Peng Zhuang ◽  
Song Song Shi

Analysis earthquake response of the long-span tube shell structure under multi-support excitations. The response of the long-span structure in the earthquake is different between multi-support excitations and uniform excitation. Using sap2000 finite element software with time history analysis, this paper analyzes the impact of the different visual velocities combining with the engineering Projects, and its internal forces and displacements. The results show the impact of the long-span tube shell structure under multi-support excitations. Draw structure peaking acceleration and displacement of time-histories. Result shows that: The appearances of structure under multi-support excitations and under uniform excitation have the same trend. The peak of acceleration and displacement of the structural is different from multi-support excitations and uniform excitation, and the time of occurrence of the peak acceleration and peak displacement is also different.


2013 ◽  
Vol 353-356 ◽  
pp. 979-983
Author(s):  
Dong Zhang ◽  
Jing Bo Su ◽  
Hui De Zhao ◽  
Hai Yan Wang

Due to the upgrade and reconstruct of a high-piled wharf, the piling construction may cause the damage of the large diameter underground pipe of a power plant nearby. For this problem, a dynamic time-history analysis model was established using MIDAS/GTS program. Based on the analysis of the pile driving vibration and its propagation law, some parameters, such as the modulus of the soil, the Poissons ratio of soil, the action time of vibration load and the damping ratio of the soil that may have an effect on the response law of the soil, were studied. The study results not only serve as an important inference to the construction of this case, but also accumulate experience and data for other similar engineering practices.


2011 ◽  
Vol 90-93 ◽  
pp. 862-868
Author(s):  
Qi Ming Wu ◽  
Dang Qi Yang ◽  
Fei Cui ◽  
Xiao Wei Yi ◽  
Rui Juan Jiang

Hangers in through arch bridges are important components since they suspend the bridge deck from the arch ribs. Local damage at a hanger may lead to progressive damage of various components in the arch bridge or even progressive collapse of the bridge. In this paper, the conventional design of double-hangers in through arch bridges is reviewed. Then a new approach to design the double-hangers is put forward. The suitability and robustness of this approach is then verified by a numerical simulation of a real through arch bridge. The impact effects induced by local hanger fracture on other structural members are simulated by dynamic time-history analyses. The new approach to design the hangers for through arch bridges is shown to improve the structural robustness. With the application of the new way put forward here, when one or more hangers are damaged to fail, the through arch bridge will not be endangered and will still maintain the overall load-bearing capacity during an appropriate length of time to allow necessary emergency measures to be taken, which illustrates the leading principle of structural robustness well.


Author(s):  
Hyun-Suk Nam ◽  
Gyo-Geun Youn ◽  
Jong-Min Lee ◽  
Hune-Tae Kim ◽  
Yun-Jae Kim

This work presents finite element ductile tearing simulation and experimental validation of a piping system with a circumferential surface cracked (SC) A106 Gr. B pipe under simulated seismic loading condition. The damage model for simulation is based on the multiaxial fracture strain energy. The parameters in the damage model are determined from tensile and fracture toughness test results under the monotonic loading condition. For the system dynamic time history analysis, the Rayleigh damping model is employed. For cyclic constitutive equations, two models were considered to confirm its sensitivity. Predicted crack initiation and ductile tearing agree well with the experimental results.


Author(s):  
Jong-Sung Kim ◽  
Suk-Hyun Lee ◽  
Hyeong Do Kweon

In this study, effect of analysis variables on structural integrity of nuclear piping under beyond design basis earthquake was investigated via performing dynamic time history seismic analysis. A finite element model of the piping system such as shut-down cooling line was developed combining solid and beam elements. Dynamic time history analysis was performed via finite element elastic plastic stress analysis. Validity of the dynamic time history analysis procedure was verified via comparing with the previous study results. Finally, the effect of analysis variables such as finite element characteristics, transition length between elbow and straight line, fluid effect, etc. was investigated via performing parametric dynamic time history seismic analysis. As a result, it was found that use of the 1st incompatible element is recommended, the transition length is the same as curvature of the elbow, and fluid has to be considered.


2011 ◽  
Vol 243-249 ◽  
pp. 1401-1404
Author(s):  
Yan Xia Ye ◽  
Jing Zhao

In order to study the influence of dynamic response of frame-support-wall structure with openings on floor, six 3D models with different radio of opening are made. According to the finite element mode analysis and dynamic time-history analysis, we know that the location of openings, the size of openings etc. are important to the performance of structure. In order to keep entire structure in good condition, we suggest that the rate of openings should be smaller than 6%~8%.


Author(s):  
Vinod K. Sadashiva ◽  
Gregory A. MacRae ◽  
Bruce L. Deam

Structures may be irregular due to non-uniform distributions of mass, stiffness, strength or due to their structural form. For regular structures, simple analysis techniques such as the Equivalent Static Method, have been calibrated against advanced analysis methods, such as the Inelastic Dynamic Time-History Analysis. Most worldwide codes allow simple analysis techniques to be used only for structures which satisfy regularity limits. Currently, such limits are based on engineering judgement and lack proper calibration. This paper describes a simple and efficient method for quantifying irregularity limits. The method is illustrated on 3, 5, 9 and 15 storey models of shear-type structures, assumed to be located in Wellington, Christchurch and Auckland. They were designed in accordance with the Equivalent Static Method of NZS 1170.5. Regular structures were defined to have constant mass at every floor level and were either designed to produce constant interstorey drift ratio at all the floors simultaneously or to have a uniform stiffness distribution over their height. Design structural ductility factors of 1, 2, 4 and 6, and target (design) interstorey drift ratios ranging between 0.5% and 3% were used in this study. Inelastic dynamic time-history analysis was carried out by subjecting these structures to a suite of code design level earthquake records. Irregular structures were created with floor masses of magnitude 1.5, 2.5, 3.5 and 5 times the regular floor mass. These increased masses were considered separately at the first floor level, mid-height and at the roof. The irregular structures were designed for the same drifts as the regular structures. The effect of increased mass at the top or bottom of the structure tended to increase the median peak drift demands compared to regular structures for the record suite considered. When the increased mass was present at the mid-height, the structures generally tended to produce lesser drift demands than the corresponding regular structures. A simple equation was developed to estimate the increase in interstorey drift due to mass irregularity. This can be used to set irregularity limits.


2013 ◽  
Vol 353-356 ◽  
pp. 2210-2215
Author(s):  
Jun Jun Wang ◽  
Lu Lu Yi

Modal analysis is also known as dynamic analysis for mode-superposition method. In the seismic response analysis of linear structural systems, it is one of the most commonly used and the most effective ways. Through the modal analysis of building structure, we can get some basic performance parameters of the structure. These parameters can help us make qualitative judgments for the respond of a structure first, and can help us judge whether they meet demands for conceptual design. Modal analysis is also the basis of other dynamic response analysis, including dynamic time history analysis and response spectrum analysis.


Sign in / Sign up

Export Citation Format

Share Document