DEVELOPMENT OF ROBUST VELOCIMETER FOR NATURAL WATER FLOW MONITORING

2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Masataka Shirakashi ◽  
Kye Wei Yeo ◽  
Mizuyasu Koide ◽  
Tsutomu Takahashi ◽  
Sheikh Ahmad Zaki Shaikh Salim

The ring-velocimeter coupled with a hot wire/film probe was developed and has been applied to wind and water tunnel experiments in Fluids Engineering Laboratory of Nagaoka University of Technology.  In this study, the hot-wire/film probe is replaced by a cantilever attached by a strain gauge to detect the drag acting on the ring.  The vortex shedding frequency from the ring is determined from the drag fluctuation by applying the spectrum analysis, and the flow velocity in turn since it is proportional with the vortex shedding frequency.  This technique for flow velocity measurement is robust in the sense that it is strong against the noise or decay of the detected signal since the dominant frequency is insensitive to such disturbances, and that the detecting probe is strong against the contaminants or particles/objects carried by the fluid.  These advantages, together with its simple and cheap characteristics, make it possible to apply to natural water flow with severe conditions.

2014 ◽  
Vol 617 ◽  
pp. 280-284
Author(s):  
Petr Michálek ◽  
David Zacho

Wind tunnel measurements of vortex shedding behind cooling tower models were performed in VZLU. Two variants of cooling tower models were used, i.e. model with smooth wall outer surface and model with rough wall surface. Measurements were conducted using hot-wire anemometer. Time signal from the anemometer was transformed using Fast-Fourier routine into frequency spectrum. Measurements have shown significant differences between smooth and rough variant of model surface and dependency of vortex shedding frequency on Reynolds number.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
S. L. Finnegan ◽  
C. Meskell ◽  
S. Ziada

Aeroacoustic resonance of bluff bodies exposed to cross flow can be problematic for many different engineering applications and knowledge of the location and interaction of acoustic sources is not well understood. Thus, an empirical investigation of the acoustically coupled flow around two tandem cylinders under two different resonant conditions is presented. It is assumed that the resonant acoustic field could be decoupled from the hydrodynamic flow field, resolved separately, and then recoupled to predict the flow/sound interaction mechanisms using Howe's theory of aerodynamic sound. Particle image velocimetry was employed to resolve the phase-averaged flow field characteristics around the cylinders at various phases in an acoustic wave cycle. It was found that the vortex shedding patterns of the two resonant conditions exhibit substantial differences. For the first condition, which occurred at low flow velocities where the natural vortex shedding frequency was below the acoustic resonance frequency, fully developed vortices formed in both the gap region between the cylinders and in the wake. These vortices were found to be in phase with each other. For the second resonant condition, which occurred at higher flow velocities where the natural vortex shedding frequency was above the acoustic resonant frequency, fully developed vortices only formed in the wake and shedding from the two cylinders were not in phase. These differences in the flow field resulted in substantial variation in the flow-acoustic interaction mechanisms between the two resonant conditions. Corresponding patterns of the net acoustic energy suggest that acoustic resonance at the lower flow velocity is due to a combination of shear layer instability in the gap and vortex shedding in the wake, while acoustic resonance at the higher flow velocity is driven by the vortex shedding in the wake of the two cylinders.


1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


2004 ◽  
Vol 126 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Z. J. Wang ◽  
Y. Zhou ◽  
X. W. Wang ◽  
W. Jin

The local time-averaged temperature θs¯ and its fluctuating component θs on the surface of a heated circular cylinder immersed in a cylinder near-wake were measured using a fiber-optic Bragg grating (FBG) sensor. Three cylinder center-to-center spacing, i.e., L/d=5.20, 2.50, and 1.18, were investigated. In order to validate the FBG sensor measurement, a thermocouple and a single hot-wire were employed to measure θs¯ on the heated cylinder and streamwise fluctuating velocity u in the near-wake of the downstream cylinder, respectively. The FBG sensor measurement of θs¯ is in good agreement with that simultaneously obtained by the thermocouple. The measured θs is closely correlated to the hot-wire measurement; the θs-spectrum exhibits a pronounced peak at the vortex shedding frequency, as identified in Eu, for each L/d. The results suggest that the FBG sensor can be used to measure reliably both time-averaged and fluctuating temperatures. The heat transfer characteristics of the heated cylinder are examined for different L/d and further compared with the case of an isolated cylinder.


Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract This article explores the applicability of utilizing different equivalent diameter (Deq) equations to estimate the vortex shedding frequency and onset of self-excited acoustic resonance for various types of finned cylinders. The focus is on three finned cylinder types that are commonly used in industrial heat exchangers: straight, twist-serrated, and crimped spirally finned cylinders. Within each type of fins, at least three different finned cylinders are investigated. The results indicate that at off-resonance conditions, utilizing the appropriate equivalent diameter collapses the Strouhal number data within the typical Strouhal number variations of an equivalent diameter circular, bare cylinder. However, when acoustic resonance is initiated, the onset and the peak of resonance excitation in all of the finned cylinder cases generally occurred at a reduced flow velocity earlier than that observed from their equivalent diameter bare cylinders. This suggests that although utilizing the appropriate equivalent diameter can reasonably estimate the vortex shedding frequency away from acoustic resonance excitation, it cannot be used to predict the onset of acoustic resonance in finned tubes. The findings of this study indicate that the effective diameter approach is not sufficient to capture the intrinsic changes in the flow-sound interaction mechanism as a result of adding fins to a bare cylinder. Thus, a revision of the acoustic Strouhal number charts is required for finned tubes of different types and arrangements.


2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.


Sign in / Sign up

Export Citation Format

Share Document