PREDICTION OF DISSOLVED OXYGEN ON STEPPED SPILLWAY WITH DIFFERENT CONFIGURATION

2017 ◽  
Vol 79 (4) ◽  
Author(s):  
Very Dermawan ◽  
Djoko Legono ◽  
Denik Sri Krisnayanti

The increase of water quality is related to the presence of dissolved oxygen. Even, the oxygen concentration in surface waters is a main indicator of the water quality for human use as well as for the aquatic biota. Air entrainment on stepped spillway is also recognised for its contribution to the oxygen transfer. The oxygen transfer on stepped spillways in skimming flow regime is increased due to earlier self-aeration and slower flow velocities in comparison to smooth spillways. This paper presents the results gained on a physical model by using a variety of different configurations of stepped spillway. The slopes of stepped spillway (θ) used are 30˚ and 45˚, the number of step (N) are 40 and 20, and two types of steps are flat steps and pooled steps. The experiments were conducted for ten Froude number (Fr) run ranging from 1.117 to 9.909. This research aimed to investigate the influence of different configuration in stepped spillway for predicting of dissolved oxygen. The results showed that the dissolved oxygen of the stepped spillway increases with an increase in chute of slope, number of step, and surface roughness on steps. The increases of Froude number as a function of discharge will cause turbulence flow becomes decreases, and the concentration of air bubble in the water will be decreased. The decreased value of turbulence flow will make dissolved oxygen level decrease. In skimming flow condition, the dissolved oxygen level decreases with increasing discharge per unit width especially for steep bed slope. 

Author(s):  
Aytaç Güven ◽  
Ahmed Hussein Mahmood

Abstract Spillways are constructed to evacuate the flood discharge safely not to let the flood wave overtop the dam body. There are different types of spillways, ogee type being the conventional one. Stepped spillway is an example of nonconventional spillways. The turbulent flow over stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over the stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with the experimental study done by others in the literature. Two models of the stepped spillway with different discharge for each model was simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which were exhibited in terms of graphics and statistical tables.


2018 ◽  
Vol 30 (1) ◽  
Author(s):  
Bentalha Chakib

Stepped spillway is a power full hydraulic structure for energy dissipation because ofthe large value of the surface roughness. The performance of the stepped spillway is enhancedwith the presence of air that can prevent or reduce the cavitation damage. This work aims tosimulate air entrainment and determine the characteristics of flow at stepped spillways. Withinthis work flow over stepped chute is simulated by using fluent computational fluid dynamics(CFD). The volume of fluid (VOF) model is used as a tool to simulate air-water interaction onthe free surface thereby the turbulence closure is derived in the k −ε turbulence standard model.The found numerical results agree well with experimental results.


2015 ◽  
Vol 773-774 ◽  
pp. 188-193
Author(s):  
Badrul Aisham Md Zain ◽  
Muhammad Amir Mat Shah ◽  
Ong Pauline ◽  
Noormaziah bte Jafferi

This paper presents the simulation of the flexible aerator model as a new concept to generate dissolved oxygen. This method is implementing the flexible beam motion as a medium to circulate water and create wave. This paper is using the simulation to optimize the suitable parameters namely the length of flexible beam and the percentage of immerse in water. The best result of dissolved oxygen level were found during run the flexible beam aerator at 12 V with 0.65m length of flexible beam and immerses 25% in water. The flexible beam was successfully implemented as a new aerator concept where it is able to generate oxygen up to 8.6mg/L with the average Standard Oxygen Transfer Efficiency 1.84 kgO2/kWhr


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1428
Author(s):  
Awais Raza ◽  
Wuyi Wan ◽  
Kashif Mehmood

Spillway is a crucial hydraulic structure used to discharge excess water from the dam reservoir. Air entrainment is essential to prevent cavitation damage on the spillway, however, without air entrainment the risk of cavitation over the spillway increases. The most important parameter for the determination of air entrainment in stepped spillways is the inception point. The inception point is the location where the air starts to inter into the water flow surface over the spillway. It occurs when the turbulent boundary layer meets the free surface. The location of the inception point depends upon different parameters like flow rate, geometry, step size, and slope of the spillway. The main aim of this study was applying numerical simulation by using the realizable k-ϵ model and the volume of fluid (VOF) method to locate the location of the inception point. For this purpose, by using different stepped spillways with four different slopes (12.5°, 19°, 29°, and 35°) different flow rates were simulated, which gives the location of the inception point of different channel slopes of stepped spillways at different flow rates. The results demonstrated that the inception point location of mild slopes is farther from the crest of the spillway than the steep slope stepped spillway. Non-aerated flow zone length increases when the channel slope decreases from steep to mild slope.


2021 ◽  
Vol 18 (1) ◽  
pp. 20-25
Author(s):  
Jaafar S. Maatooq

The velocity at the toe of a spillway is a major variable when designing a stilling basin. Reducing this velocity leads to reduce the size of the basin as well as the required appurtenances which needs for dissipating the surplus kinetic energy of the flow. If the spillway chute is able to dissipate more kinetic energy, then the resulting flow velocity at the toe of spillway will be reduced. Typically, stepped spillway is able to dissipate more kinetic energy than that of a smooth surface. In the present study, the typical uniform shape of the steps has been modified to a labyrinth shape. It is postulated that a labyrinth shape can increase the dissipation of kinetic energy through increasing the overlap between the forests of nappe will circulating the flow that in turns leading to further turbulence. This action can reduce the jet velocities near the surfaces, thus minimizing cavitation. At the same time the increasing of circulation regions will maximize the opportunity for air entrainment which also helps to dissipate more kinetic energy. The undertaken physical models were consisted of three labyrinth stepped spillways with magnification ratios (width of labyrinth to width of conventional step) WL/W are 1.1, 1.2, and 1.3 as well as testing a conventional stepped spillway (WL/W=1). It is concluded that the spillway chute coefficient is directly proportional to the labyrinth ratio and its value decreases as this ratio increases.


2007 ◽  
Vol 51 ◽  
pp. 1409-1414
Author(s):  
Yoichi KIMATA ◽  
Harumichi KYOTOH ◽  
Noriyuki UTAGAWA

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1956 ◽  
Author(s):  
Dong ◽  
Wang ◽  
Vetsch ◽  
Boes ◽  
Tan

Stepped spillways are commonly used under relatively low unit discharge, where cavitation pitting can be avoided by self-aerated flow. However, there are several dams in China with stepped spillways in combination with X-shaped flaring gate piers with unit design discharge considerably larger than specified in the available guidelines. Consequently, air–water two-phase flow on stepped spillway behind X-shaped flaring gate piers under very high unit discharge was investigated using Computational Fluid Dynamics (CFD) simulations. The 3-D Reynolds-averaged Navier–Stokes equations were solved, including sub-grid models for air entrainment, density evaluation, and drift-flux, to capture self-aerated free-surface flow over the spillway. The pressure on the vertical step faces was compared with laboratory data. In addition, the air–water two-phase flow characteristics and prototype step failure of the simulated prototype spillway were analyzed based on the numerical results of velocity, pressure, and air concentration. Moreover, an optimized bottom-aeration was further studied. The results reveal that the involved models can predict the air concentration near the steps. The cavitation index at the stepped surface is below the threshold value, and the air concentration is insufficient under high unit discharges. Moreover, with the proposed optimization of the aerator air entrainment can be improved and thereby cavitation erosion risk can be reduced.


2003 ◽  
Vol 38 (3) ◽  
pp. 527-539 ◽  
Author(s):  
M. Emin Emiroglu ◽  
Ahmet Baylar

Abstract Dissolved oxygen is essential to healthy streams and lakes. The dissolved oxygen level is an indication of how polluted the water is and how well the water can support aquatic plant and animal life. A higher dissolved oxygen level indicates better water quality. There is a significant oxygen transfer associated with most hydraulic structures because the air entrained into the flow is split into small bubbles, which greatly increases the surface area for transfer. Stepped chutes are a particular instance of this, and the aeration efficiency of such structures has not been studied in the laboratory and field. In this paper, the aeration performance of the stepped chutes with and without end sill was investigated in a large laboratory stepped chute. An empirical correlation predicting the oxygen transfer efficiency was developed for stepped chutes. The results indicated that l/h and s/h had a significant effect on the aeration efficiency of stepped chutes.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 710
Author(s):  
Amir Ghaderi ◽  
Saeed Abbasi ◽  
Silvia Di Francesco

This work presents numerical simulations carried out to study the influence of geometric characteristics of pooled steps on the energy dissipation performance, flow patterns properties, velocity rates, and pressure distributions over a spillway. The localization of the inception point of air entrainment was also assessed, being a key design parameter of spillways. With this aim, different configurations of steps were taken in account, including flat, pooled, and notch pooled types. The computational procedure was first validated with experimental results from the literature and then used to test the hydraulic behavior derived from different geometric configurations. The flat step configuration showed the best energy dissipation performance as compared with other configurations. With the notched pooled step configuration, the efficiency performance of the pooled structure improved by about 5.8%. The interfacial velocities of the flat stepped spillway were smaller than those of the pooled structure. The pressure value at the beginning of the step in the pooled configuration was larger than the flat configuration, while for the notched pool the maximum pressure values decreased near the step pool. Pool configuration (simple or notched) did not have a significant influence on the location of air entrainment.


2022 ◽  
Vol 12 (1) ◽  
pp. 448
Author(s):  
Najam us Saqib ◽  
Muhammad Akbar ◽  
Huali Pan ◽  
Guoqiang Ou ◽  
Muhammad Mohsin ◽  
...  

In this study, curved risers stepped spillways models based on the increasing angle of suspension were tested to check for improvement in energy dissipation and pressure distributions. Four fourteen-steps stepped spillway models with a slope 1:0.84 were selected, using Froude’s number non-dimensional similarity. The risers of steps were made curved, based on three angles of suspensions, i.e., 30°, 60°, and 90°. The simulations were performed by FLOW 3D software and by the turbulence model Renormalization Group (RNG) for discharges between 0.020 and 0.068 m3/s followed by the model calibration. The 3D Reynolds-averaged Navier–Stokes equations were solved, which included sub-grid models for air entrainment, density evaluation, and drift–flux, to capture free-surface flow over the stepped spillway. It was estimated that curving the risers increases the energy dissipation up to three percent for lower flow rates, whereas it has no significant impact on energy dissipation for higher flow rates. It was found that in simply stepped spillway lower steps dissipate more energy as compared to curved risers stepped where energy dissipation is shifted to higher steps. On the other hand, curved risers stepped spillways showed lower values of negative pressures as compared to the simply stepped spillway. It was seen that a higher energy dissipating step as experienced more negative pressures as compared to the lower energy dissipating step.


Sign in / Sign up

Export Citation Format

Share Document