scholarly journals Numerical Analysis of Pressure Profiles and Energy Dissipation across Stepped Spillways Having Curved Risers

2022 ◽  
Vol 12 (1) ◽  
pp. 448
Author(s):  
Najam us Saqib ◽  
Muhammad Akbar ◽  
Huali Pan ◽  
Guoqiang Ou ◽  
Muhammad Mohsin ◽  
...  

In this study, curved risers stepped spillways models based on the increasing angle of suspension were tested to check for improvement in energy dissipation and pressure distributions. Four fourteen-steps stepped spillway models with a slope 1:0.84 were selected, using Froude’s number non-dimensional similarity. The risers of steps were made curved, based on three angles of suspensions, i.e., 30°, 60°, and 90°. The simulations were performed by FLOW 3D software and by the turbulence model Renormalization Group (RNG) for discharges between 0.020 and 0.068 m3/s followed by the model calibration. The 3D Reynolds-averaged Navier–Stokes equations were solved, which included sub-grid models for air entrainment, density evaluation, and drift–flux, to capture free-surface flow over the stepped spillway. It was estimated that curving the risers increases the energy dissipation up to three percent for lower flow rates, whereas it has no significant impact on energy dissipation for higher flow rates. It was found that in simply stepped spillway lower steps dissipate more energy as compared to curved risers stepped where energy dissipation is shifted to higher steps. On the other hand, curved risers stepped spillways showed lower values of negative pressures as compared to the simply stepped spillway. It was seen that a higher energy dissipating step as experienced more negative pressures as compared to the lower energy dissipating step.

2020 ◽  
Vol 10 (1) ◽  
pp. 43-50
Author(s):  
Shawnm M. Saleh ◽  
Sarhang M. Husain

Using stepped chutes as a structure for controlling flood discharges is applicable for long time. Measuring the depth of flow over that structure is essential for designing of the side walls. The aim of this paper is to determine the free-surface that flows on spillway equipped with non-uniform step sizes. For that purpose, the two-dimensional software package code of ANSYS-CFX has been utilized to run eight configurations of two moderate slopes (1V:2H and 1V:2.5H) and for four different discharges 1≤dc/hs≤2.2 to determine the effect of flow discharges, chute slopes, and step heights on the position of free surface along the structure over non-uniform stepped cascade. The hexahedral grid size of 0.015 m is selected with inflation technique close to the walls. In addition, the renormalized group of k-ε (RNG) turbulence model is implemented and the numerical volume of fluid software is employed. The results show smoother stream for higher discharges, and the free-surface drops when the slope of chutes increases. Moreover, it is found that the step size has insignificant effect on the depth of water. The results of this study are important because they provide new insight in improving the design of stepped spillways. It is recommended to perform more investigations to evaluate their effectiveness in other flow parameters including pressure distribution and energy dissipation rates.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1428
Author(s):  
Awais Raza ◽  
Wuyi Wan ◽  
Kashif Mehmood

Spillway is a crucial hydraulic structure used to discharge excess water from the dam reservoir. Air entrainment is essential to prevent cavitation damage on the spillway, however, without air entrainment the risk of cavitation over the spillway increases. The most important parameter for the determination of air entrainment in stepped spillways is the inception point. The inception point is the location where the air starts to inter into the water flow surface over the spillway. It occurs when the turbulent boundary layer meets the free surface. The location of the inception point depends upon different parameters like flow rate, geometry, step size, and slope of the spillway. The main aim of this study was applying numerical simulation by using the realizable k-ϵ model and the volume of fluid (VOF) method to locate the location of the inception point. For this purpose, by using different stepped spillways with four different slopes (12.5°, 19°, 29°, and 35°) different flow rates were simulated, which gives the location of the inception point of different channel slopes of stepped spillways at different flow rates. The results demonstrated that the inception point location of mild slopes is farther from the crest of the spillway than the steep slope stepped spillway. Non-aerated flow zone length increases when the channel slope decreases from steep to mild slope.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1956 ◽  
Author(s):  
Dong ◽  
Wang ◽  
Vetsch ◽  
Boes ◽  
Tan

Stepped spillways are commonly used under relatively low unit discharge, where cavitation pitting can be avoided by self-aerated flow. However, there are several dams in China with stepped spillways in combination with X-shaped flaring gate piers with unit design discharge considerably larger than specified in the available guidelines. Consequently, air–water two-phase flow on stepped spillway behind X-shaped flaring gate piers under very high unit discharge was investigated using Computational Fluid Dynamics (CFD) simulations. The 3-D Reynolds-averaged Navier–Stokes equations were solved, including sub-grid models for air entrainment, density evaluation, and drift-flux, to capture self-aerated free-surface flow over the spillway. The pressure on the vertical step faces was compared with laboratory data. In addition, the air–water two-phase flow characteristics and prototype step failure of the simulated prototype spillway were analyzed based on the numerical results of velocity, pressure, and air concentration. Moreover, an optimized bottom-aeration was further studied. The results reveal that the involved models can predict the air concentration near the steps. The cavitation index at the stepped surface is below the threshold value, and the air concentration is insufficient under high unit discharges. Moreover, with the proposed optimization of the aerator air entrainment can be improved and thereby cavitation erosion risk can be reduced.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Fabrício Machado Osmar ◽  
Alba Valéria Brandão Canellas ◽  
Priscila dos Santos Priebe ◽  
Lorena Silva Saraiva ◽  
Eder Daniel Teixeira ◽  
...  

ABSTRACT Stepped spillways have been widely used for flood runoff due to of their constructive advantages and in regards to energy dissipation during the drop, allowing downstream dissipation structures to be designed in smaller dimensions. Due to the need for further studies on the effect of runoff in the chute of the stepped spillway and the analysis of dimensionless numbers used to characterize the longitudinal distribution of the pressures acting on the faces of the steps of a spillway, this study aims to characterize the acting forces on the steps of said spillways. Analyses were performed on a physical model of spillway with a slope of 1V: 0.75H and steps with a height of 6 centimeters. The pressure fields on the steps were analyzed and compared with results found in literature. As a general finding concerning the pressure in the horizontal faces, it was ascertained that the traction and the compression loads have relatively similar magnitudes, the negative pressures being more intense. Regarding the maximum pressures at the horizontal faces of the steps, it should be emphasized that the maximum values of compression have occurred at the end of the chute and that the lower discharges yielded higher values of pressure coefficients.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 710
Author(s):  
Amir Ghaderi ◽  
Saeed Abbasi ◽  
Silvia Di Francesco

This work presents numerical simulations carried out to study the influence of geometric characteristics of pooled steps on the energy dissipation performance, flow patterns properties, velocity rates, and pressure distributions over a spillway. The localization of the inception point of air entrainment was also assessed, being a key design parameter of spillways. With this aim, different configurations of steps were taken in account, including flat, pooled, and notch pooled types. The computational procedure was first validated with experimental results from the literature and then used to test the hydraulic behavior derived from different geometric configurations. The flat step configuration showed the best energy dissipation performance as compared with other configurations. With the notched pooled step configuration, the efficiency performance of the pooled structure improved by about 5.8%. The interfacial velocities of the flat stepped spillway were smaller than those of the pooled structure. The pressure value at the beginning of the step in the pooled configuration was larger than the flat configuration, while for the notched pool the maximum pressure values decreased near the step pool. Pool configuration (simple or notched) did not have a significant influence on the location of air entrainment.


1993 ◽  
Vol 20 (3) ◽  
pp. 422-435 ◽  
Author(s):  
Hubert Chanson

Stepped spillways have become a popular method for handling flood releases. The steps significantly increase the rate of energy dissipation taking place on the spillway face and reduce the size of the required downstream energy dissipation basin. The compatibility of stepped spillways with roller compacted concrete and gabion construction techniques results in low additional cost for the spillway. This paper presents a review of recent developments for the design of stepped spillways, provides a discussion of the effects of air entrainment, and presents new calculation methods that take into account the effects of flow aeration on the flow characteristics and the rate of energy dissipation. Key words: stepped spillway, air entrainment, dam, spillway, energy dissipation.


2020 ◽  
Vol 20 (4) ◽  
pp. 1546-1553
Author(s):  
Yu Zhou ◽  
Jianhua Wu ◽  
Fei Ma ◽  
Jianyong Hu

Abstract In skimming flow, a uniform flow can be achieved and the flow depth, velocity and air concentration remain constant if a stepped spillway is sufficiently long. In this study, physical model experiments were performed to investigate the uniform characteristics and energy dissipation of a hydraulic-jump-stepped spillway, which is a new type of stepped spillway for increasing the unit discharge capacity and energy dissipation. Based on the redefinition of uniform flow, experimental results show that at a given stepped spillway slope, a smaller height for the beginning of the uniform flow region, a greater uniform aerated flow depth and a greater uniform equivalent clear water flow depth can be obtained as compared with the traditional stepped spillway due to strong aeration in the aeration basin. Under the condition of uniform flow, the energy dissipation rate of stepped spillways can be estimated by the equivalent clear water flow depth with given inflow conditions. Compared with the traditional stepped spillway, the uniform flow over the hydraulic-jump-stepped spillway has a smaller specific energy, revealing that the hydraulic-jump-stepped spillway is more advantageous for dissipating energy, especially at large unit discharges.


Author(s):  
Aytaç Güven ◽  
Ahmed Hussein Mahmood

Abstract Spillways are constructed to evacuate the flood discharge safely not to let the flood wave overtop the dam body. There are different types of spillways, ogee type being the conventional one. Stepped spillway is an example of nonconventional spillways. The turbulent flow over stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over the stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with the experimental study done by others in the literature. Two models of the stepped spillway with different discharge for each model was simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which were exhibited in terms of graphics and statistical tables.


2018 ◽  
Vol 52 (5) ◽  
pp. 1679-1707 ◽  
Author(s):  
Edwige Godlewski ◽  
Martin Parisot ◽  
Jacques Sainte-Marie ◽  
Fabien Wahl

We are interested in the modeling and the numerical approximation of flows in the presence of a roof, for example flows in sewers or under an ice floe. A shallow water model with a supplementary congestion constraint describing the roof is derived from the Navier-Stokes equations. The congestion constraint is a challenging problem for the numerical resolution of hyperbolic equations. To overcome this difficulty, we follow a pseudo-compressibility relaxation approach. Eventually, a numerical scheme based on a finite volume method is proposed. The well-balanced property and the dissipation of the mechanical energy, acting as a mathematical entropy, are ensured under a non-restrictive condition on the time step in spite of the large celerity of the potential waves in the congested areas. Simulations in one dimension for transcritical steady flow are carried out and numerical solutions are compared to several analytical (stationary and non-stationary) solutions for validation.


Sign in / Sign up

Export Citation Format

Share Document