scholarly journals Unsteady MHD Flow of Cassonnano Fluid with Chemical Reaction, Thermal Radiation and Heat Generation/Absorption

MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 33-52 ◽  
Author(s):  
Nur Azlina Mat Noor ◽  
Sharidan Shafie ◽  
Mohd Ariff Admon

The hydromagnetic mixed convection flow of Cassonnano fluid under the influence of chemical reaction,thermal radiation and heat generation or absorption is investigated. The flow is induced due to unsteady nonlinearly stretching sheet saturated in a porous medium. The governing nonlinear coupled partial differential equations are converted into the system of coupled ordinary differential equations using similarity transformations and then solved numerically via Keller box method. The effects of pertinent parameters on velocity, temperature and nanoparticles concentration as well as wall shear stress, heat and mass transfer rate are analyzed and displayed graphically. The results for skin friction coefficient and local Nusselt number are compared with previously published work and found to be in good agreement. Findings demonstrate that increase in Casson parameter enhanced the friction factor and heat transfer rate. It is noticed that the heat transfer rate is declined with increment in Brownian motion and thermophoresis parameters. The nanoparticles concentration is seen to be higherin generative chemical reaction and opposite effect is observed in destructive chemical reaction. Increase in unsteadiness parameter decreased the fluid velocity, temperature and nanoparticles concentration. The magnitude of wall shear stress is also reduced with increase in unsteadiness and porous medium parameters.

2015 ◽  
Vol 93 (5) ◽  
pp. 532-541 ◽  
Author(s):  
M. Modather M. Abdou ◽  
E. Roshdy EL-Zahar ◽  
Ali J. Chamkha

An analysis was carried out to study the effect of thermal radiation on magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid near the stagnation point of a vertical stretching sheet in a porous medium with internal heat generation–absorption. The flow is generated because of linear stretching of the sheet and influenced by the uniform magnetic field that is applied horizontally in the flow region. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically using an accurate implicit finite difference scheme. A comparison of the obtained results with previously published numerical results is done and the results are found to be in good agreement. The effects of the viscoelastic fluid parameter, magnetic field parameter, nonuniform heat source–sink, and the thermal radiation parameter on the heat transfer characteristics are presented graphically and discussed. The values of the skin friction coefficient and the local Nusselt number are tabulated for both cases of assisting and opposing flows.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 531 ◽  
Author(s):  
Ullah ◽  
Abdullah Alkanhal ◽  
Shafie ◽  
Nisar ◽  
Khan ◽  
...  

The aim of the present analysis is to provide local similarity solutions of Casson fluid over a non-isothermal cylinder subject to suction/blowing. The cylinder is placed inside a porous medium and stretched in a nonlinear way. Further, the impact of chemical reaction, viscous dissipation, and heat generation/absorption on flow fields is also investigated. Similarity transformations are employed to convert the nonlinear governing equations to nonlinear ordinary differential equations, and then solved via the Keller box method. Findings demonstrate that the magnitude of the friction factor and mass transfer rate are suppressed with increment in Casson parameter, whereas heat transfer rate is found to be intensified. Increase in the curvature parameter enhanced the flow field distributions. The magnitude of wall shear stress is noticed to be higher with an increase in porosity and suction/blowing parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Md. Mamun Molla ◽  
Anita Biswas ◽  
Abdullah Al-Mamun ◽  
Md. Anwar Hossain

The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Hazem Ali Attia ◽  
Karem Mahmoud Ewis ◽  
Mostafa A. M. Abdeen

An analysis is made of the steady laminar axisymmetric stagnation point flow of an incompressible viscous fluid in a porous medium impinging on a permeable radially stretching sheet with heat generation or absorption. A uniform suction or blowing is applied normal to the plate which is maintained at a constant temperature. Similarity transformation is used to transform the governing partial differential equations to ordinary differential equations. The finite difference method and generalized Thomas algorithm are used to solve the governing nonlinear momentum and energy equations. The effects of the uniform suction/blowing velocity, the stretching parameter and the heat generation/absorption coefficient on both the flow field and heat transfer are presented and discussed. The results indicate that increasing the stretching parameter or the suction/blowing velocity decreases both the velocity and thermal boundary layer thicknesses. The effect of the stretching parameter on the velocity components is more apparent for suction than blowing while its effect on the temperature and rate of heat transfer at the wall is clearer in the case of blowing than suction.


2019 ◽  
Vol 24 (3) ◽  
pp. 725-737
Author(s):  
B. Zigta

Abstract An analysis is presented to study the effects of thermal radiation, chemical reaction, viscous and Joule dissipation on MHD free convection flow between a pair of infinite vertical Couette channel walls embedded in a porous medium. The fluid flows by a strong transverse magnetic field imposed perpendicularly to the channel wall on the assumption of a small magnetic Reynolds number. The governing non linear partial differential equations are transformed in to ordinary differential equations and are solved analytically. The effect of various parameters viz., Eckert number, electric conductivity, dynamic viscosity and strength of magnetic field on temperature profile has been discussed and presented graphically.


Author(s):  
Naramgari Sandeep ◽  
Chalavadi Sulochana ◽  
Isaac Lare Animasaun

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110422
Author(s):  
Ahmed M. Sedki ◽  
S. M. Abo-Dahab ◽  
J. Bouslimi ◽  
K. H. Mahmoud

Here, we study the effect of mixed convection and thermal radiation on unsteady boundary layer of heat transfer and nanofluid flow over permeable moving surface through a porous medium. The effect of heat generation is also discussed. The equations governing the system are the continuity equation, momentum equation and the heat transfer equation. These governing equations transformed into a system of nondimensional equations contain many physical parameters that describe the study. The transformed equations are solved numerically using an implicit finite difference technique with Newton's linearization method. The thermo-physical parameters describe the study are the mixed convection parameter α, [Formula: see text], the Radiation parameter Rd, [Formula: see text] , porous medium parameter k, [Formula: see text], the nanoparticles volume [Formula: see text],[Formula: see text], the suction or injection parameter fw, [Formula: see text], the unsteadiness parameter At, [Formula: see text] and the heat source parameter λ  =  0.5 .The influence of the thermo-physical parameters is obtained analytically and displayed graphically. Comparisons of some special cases of the present study are performed with previously published studies and a good agreement is obtained.


Sign in / Sign up

Export Citation Format

Share Document