scholarly journals Effect of fertilization on below-ground plant mass of submontane Polygono-Cirsietum meadow

Beskydy ◽  
2013 ◽  
Vol 6 (1) ◽  
pp. 33-42
Author(s):  
Petr Holub ◽  
Ivan Tůma ◽  
Karel Fiala

We assessed below-ground net primary productivity (BNPP) in the wet submontane Cirsium meadow occurred in the highland region of the Czech Republic. Effect of four different fertilization levels on BNPP was estimated in 1992. At the beginning of the growing season (April 29), total dry mass of rhizomes, roots and total below-ground plant parts of unfertilized stand reached 177, 1478 and 1657 g.m-2, respectively. Their living parts formed 42 % of their total dry mass. In comparison with unfertilized stands, however, the greatest accumulation of dry mass of rhizomes (504 g.m-2), roots (1503 g.m-2) and total below-ground dry mass (2008 g.m-2) was reached after application of 90 kgN.ha-1. Similarly, the highest BNPP values for living (435 g.m-2.yr-1) and total below-ground dry mass (351 g.m-2.yr-1) were calculated for the stand affected by the same amount of fertilization. These data show how variable role grasslands can play in accumulation and turn over of root biomass due to different levels of fertilization.

2015 ◽  
Vol 95 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Martin A. Bolinder ◽  
Thomas Kätterer ◽  
Christopher Poeplau ◽  
Gunnar Börjesson ◽  
Leon E. Parent

Bolinder, M. A., Kätterer, T., Poeplau, C., Börjesson, G. and Parent, L. E. 2015. Net primary productivity and below-ground crop residue inputs for root crops: Potato (Solanum tuberosum L.) and sugar beet (Beta vulgaris L.). Can. J. Soil Sci. 95: 87–93. Root crops are significant in agro-ecosystems of temperate climates. However, the amounts of crop residues for these crop types are not well documented and they need to be accounted for in the modeling of soil organic carbon dynamics. Our objective was to review field measurements of root biomass left in the soil as crop residues at harvest for potato and sugar beet. We considered estimates for crop residue inputs as root biomass presented in the literature and some unpublished results. Our analysis showed that compared to, for example, cereals, the contribution of below-ground net primary productivity (NPP) to crop residues is at least two to three times lower for root crops. Indeed, the field measurements indicated that root biomass for topsoils only represents on average 25 to 30 g dry matter (DM) m−2 yr−1. Other estimates, albeit variable and region-specific, tended to be higher. We suggest relative plant DM allocation coefficients for agronomic yield (RP), above-ground biomass (RS) and root biomass (RR) components, expressed as a proportion of total NPP. These coefficients, representative for temperate climates (0.739:0.236:0.025 for potato and 0.626:0.357:0.017 for sugar beet), should be useful in the modeling of agro-ecosystems that include root crops.


2013 ◽  
Vol 59 (No. 8) ◽  
pp. 342-347 ◽  
Author(s):  
P. Holub ◽  
I. Tůma ◽  
K. Fiala

Root net primary productivity (RNPP) was assessed in the wet submontane meadow in the highland region of the Czech Republic. RNPP was studied from 1992 to 1995 with help of the in-growth core technique. The effect of different intensities of fertilization on root growth was covered. In comparison with unfertilized stands, the application of fertilizers (90 kg N/ha) resulted, mostly significantly, in greater root productivity (297 g/m<sup>2</sup>/year and 2.08 g/m<sup>2</sup>/day, on average). This represented an increase by 72% and 71%, respectively. Variability in the fraction of RNPP to total net primary productivity was examined. Results indicate that this fraction varied from 0.18 to 0.25 across the compared treatments and decreased with increasing fertilization. Data show how different roles can grasslands play in accumulation of plant matter due to different levels of fertilization.


1979 ◽  
Vol 25 (suppl_1) ◽  
pp. a0001-z0001
Author(s):  
Lewis F. Ohmann ◽  
David F. Grigal

Abstract Three virgin plant communities dominated by Pinus banksiana, three by Populus-Betula, and one mixed community were studied over five growing seasons after burning in the 1971 Little Sioux Fire. From 1971 through 1975 tree and tall shrub reproduction generally decreased in density and increased in biomass. Low shrub cover and biomass increased for 3 years and then leveled off as tree and tall shrub competition increased. Herb cover and biomass increased most rapidly through 1972 and then slowed substantially. By 1975 total net primary productivity averaged 850 g/m²/yr for all seven stands, and over 1,200 g/m²/yr in the broadleaf-dominated stands. The forest floor 01 horizon increased in mass through 1974, and then apparently stabilized at about 620 g/m². The 02 horizon averaged about 1,000 g/m² and was still increasing in 1975. By the 1975 growing season the total amount of nutrients in aboveground vegetation on burned plots ranged from 33 percent of the N to 65 percent of the K found in nearby unburned forest communities. By 1973 the nutrients in the aboveground vegetation and the 01 horizon of the forest floor were greater than the quantity estimated to have been mobilized by the fire. The vegetation was an effective sink for the released nutrients.


2010 ◽  
Vol 40 (12) ◽  
pp. 2360-2369 ◽  
Author(s):  
Jacob H. Dyer ◽  
Stith T. Gower ◽  
Jodi A. Forrester ◽  
Craig G. Lorimer ◽  
David J. Mladenoff ◽  
...  

Restoring structural features of old-growth forests, such as increased canopy gap sizes and coarse woody debris, is a common management goal for second-growth, even-aged stands. We experimentally manipulated forest structure by creating variable-size canopy gaps in a second-growth northern hardwood forest in north-central Wisconsin following two growing seasons of pre-treatment monitoring. The objectives of this study were to quantify the influence of canopy gaps of different sizes (50–380 m2) on aboveground biomass and productivity of each vegetation stratum two growing seasons following treatment. Two years after treatment, ground layer biomass in canopy openings increased significantly relative to surrounding undisturbed transition zones. The response of ground layer biomass was greatest in the large versus the medium and small gaps. Sapling aboveground net primary productivity was significantly greater in undisturbed transition zones than within gaps across gap sizes following the second post-treatment growing season. Annual stem diameter increment was greatest for trees along gap borders and was correlated with crown class, percentage of crown perimeter exposed, gap area, and shade tolerance. Total aboveground net primary productivity was significantly lower in the gap addition plots the first year but by the second post-treatment growing season no longer differed from that in the control plots.


2009 ◽  
Vol 6 (12) ◽  
pp. 2759-2778 ◽  
Author(s):  
L. E. O. C. Aragão ◽  
Y. Malhi ◽  
D. B. Metcalfe ◽  
J. E. Silva-Espejo ◽  
E. Jiménez ◽  
...  

Abstract. The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.


Author(s):  
Y. Qiu ◽  
L. Zhang ◽  
D. Fan

The relationship between net primary productivity (NPP) and phenological changes is of great significance to the study of regional ecosystem processes. In this study, firstly, NPP was estimated with the remote sensing model based on the SPOT-VGT NDVI dataset (2000&amp;ndash;2015), meteorological data and the vegetation map in Northeast China. Then, using NDVI time series data which was reconstructed by polynomial fitting, phenology was extracted with the dynamic threshold method. Finally, the relationship between NPP and phenology was analyzed. The results showed that NPP mainly increased in the cropland, grassland, forestland and shrubland; however, vegetation NPP decreased in the ecotone among cropland, grassland and forestland. Correlation analysis suggested that the relationships between NPP and phenological metrics (i.e., the start of the growing season (SOS), the end of the growing season (EOS), the length of the growing season (LOS)) were different due to geographical location. On the whole, there was a positive correlation between NPP and the LOS in the forestland, and negative in the cropland and grassland, indicating that extended LOS can promote the accumulation of forestland NPP. By analyzing the monthly NDVI data during the vigorous growth period, the increase of NPP in the grassland and cropland was mainly due to the better growth from June to August, and shortened LOS did not lead to reduce the NPP. Generally, the response of NPP to phenology in Northeast China were more complex, showing obvious difference of vegetation types and spatial variability, we need to consider topography, community structure and other factors in the further studies.


2009 ◽  
Vol 6 (1) ◽  
pp. 2441-2488 ◽  
Author(s):  
L. E. O. C. Aragão ◽  
Y. Malhi ◽  
D. B. Metcalfe ◽  
J. E. Silva-Espejo ◽  
E. Jiménez ◽  
...  

Abstract. The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10650
Author(s):  
Renping Zhang ◽  
Jing Guo ◽  
Gang Yin

Determining the relationship between net primary productivity (NPP) and grassland phenology is important for an in-depth understanding of the impact of climate change on ecosystems. In this study, the NPP of grassland in Xinjiang, China, was simulated using the Carnegie-Ames-Stanford approach (CASA) model with Moderate Resolution Imaging Spectroradiometer (MODIS) grassland phenological (MCD12Q2) data to study trends in phenological metrics, grassland NPP, and the relations between these factors from 2001–2014. The results revealed advancement of the start of the growing season (SOS) for grassland in most regions (55.2%) in Xinjiang. The percentage of grassland area in which the end of the growing season (EOS) was delayed (50.9%) was generally the same as that in which the EOS was advanced (49.1%). The percentage of grassland area with an increase in the length of the growing season (LOS) for the grassland area (54.6%) was greater than that with a decrease in the LOS (45.4%). The percentage of grassland area with an increase in NPP (61.6%) was greater than that with a decrease in NPP (38.4%). Warmer regions featured an earlier SOS and a later EOS and thus a longer LOS. Regions with higher precipitation exhibited a later SOS and an earlier EOS and thus a shorter LOS. In most regions, the SOS was earlier, and spring NPP was higher. A linear statistical analysis showed that at various humidity (K) levels, grassland NPP in all regions initially increased but then decreased with increasing LOS. At higher levels of K, when NPP gradually increased, the LOS gradually decreased.


2020 ◽  
Author(s):  
Zhoutao Zheng ◽  
Wenquan Zhu ◽  
Yangjian Zhang ◽  
Ke Huang ◽  
Nan Cong

&lt;p&gt;Vegetation phenology is recognized to exert crucial influences on carbon sequestration and the role of vegetation phenology in mediating carbon cycle varies with ecosystem type. However, the relationship between vegetation phenology and productivity has not been fully understood in the alpine ecosystem due to a lack of field observations, poor model performances and their complex mechanisms. In this study, we examined the spatio-temporal variation in beginning of growing season (BGS) and net primary productivity (NPP) for the alpine grassland on the Tibetan Plateau (TP) and the regulation effects of spring phenology on seasonal NPP by integrating field observations, remote sensing monitoring and ecosystem model simulation. The ecosystem model performances were improved by optimizing ecosystem parameters from field observations. The results indicated a significant advance in BGS with a rate of 0.31 days/yr (P &lt; 0.1) in the alpine grassland during 2001-2015 while the annual NPP increased significantly at a rate of 1.25 gC/m&lt;sup&gt;2&lt;/sup&gt;/yr (P &lt; 0.01). With regard to the relationship between BGS and NPP, large spatial heterogeneities were identified. Overall, a negative but non-significant correlation (R = -0.34, P &gt; 0.1) was observed between BGS and annual NPP for the entire grassland ecosystem on the TP. But responses of NPP to BGS varied with seasons. Specifically, BGS showed significant negative correlation with spring NPP (R = -0.73, P &lt; 0.01), and advanced spring led to increased spring NPP. The positive effects of advanced BGS on NPP tended to weaken in summer. Moreover, BGS was significantly and positively correlated with autumn NPP in some relatively arid zones of the southwestern TP, suggesting the suppressing effects of earlier spring on carbon assimilation during the later growing season in water limited areas. This study improved our understanding on the impacts of biotic factors on carbon cycles of the alpine ecosystem and implies that the effects of phenology can&amp;#8217;t be concluded simply for an annual sum, and their relationships for each separate season are also critical.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document