Experimental Investigation on the Friction Coefficients for Different Materials, Lubrication Conditions and Coatings in Bolted Joints

2021 ◽  
Author(s):  
Stefano Fini ◽  
Massimiliano De Agostinis ◽  
Dario Croccolo ◽  
Giorgio Olmi ◽  
Francesco Robusto ◽  
...  
Author(s):  
Dario Croccolo ◽  
Massimiliano De Agostinis ◽  
Stefano Fini ◽  
Giorgio Olmi ◽  
Francesco Robusto ◽  
...  

Abstract The present paper investigates the influence of several design parameters on the frictional response of a bolted joint, involving screws from strength grades 8.8 to 12.9, with black oxidization coating or zinc coatings. The experimentation deals with different underhead and nut materials (cast iron, aluminum), lubrication conditions (dry, lubricated, two different threadlockers: medium and strong), roughness condition in the underhead (cast, machined, painted, underhead washers) and cosidering also the effect of repeated tightenings. The friction coefficients of the actual application, retrieved based on the relevant operating parameters, are needed to support a correct design. The experimentation has been carried out by a purposely developed specimen, consisting of two parts: an instrumented sleeve, with a double array of strain gauges capable of sampling both the axial preload and the underhead torque, and interchangeable underhead washers. The testing apparatus is provided with a device which allows preventing undesired rotation of the washers. The washer material and surface treatment change among the different specimen sets. The tightening torque is applied by means of a 10-120Nm digital torque wrench. The collected data have been processed by the tools of ANoVa. Such tools allowed assessing the significance of each factor, as well as related interactions.


2020 ◽  
Vol 72 (6) ◽  
pp. 805-810
Author(s):  
Hua Zhang ◽  
Guangwu Zhou ◽  
Ping Zhong ◽  
Kepeng Wu ◽  
Xingwu Ding

Purpose The purpose of this paper is to study the influence of friction coefficient of materials with different elastic modulus on the variation of velocity and load under water lubrication and oil lubrication conditions. Design/methodology/approach Low-viscosity lubricating oil and water were used as lubricants to test the friction performance of the ball-disc contact friction pair in the lubrication state on the universal micro-tribometer multi-functional friction and wear test system. Findings In the same speed range, the lubrication states from soft to rigid materials are not necessarily similar to each other. Generally, the material with low elastic modulus is suitable in low-viscosity lubricant environments, while the material with high elastic modulus has relatively smaller friction coefficients in oil-lubricated environments compared with water lubrication. However, the coefficients of polyethylene, polytetrafluoroethylen and polyoxymethylene are exceeded by rubber’s coefficients under water lubrication in the same experiment environments, and their lubrication states are not affected by lubricants. The friction coefficient of the friction pair decreases with the increase of loads; however, it does not apply to all materials. The friction coefficients of materials with smaller elastic modulus such as rubber under high loads are rather large. Therefore, the elastic modulus of the material under high loads is a factor to be considered. Originality/value The Stribeck curves study of the ball-disk contact friction pair comprising soft and rigid materials, whose elastic modulus is from hundreds of GPa to a few of MPa, was carried out. The influence of different speeds, loads and lubricants on the friction coefficient of the friction pair was revealed, which provided a research basis for the selection and matching of friction pair materials.


1988 ◽  
Vol 110 (3) ◽  
pp. 533-538 ◽  
Author(s):  
E. H. Gassenfeit ◽  
A. Soom

Measurements of instantaneous coefficients of friction and associated motions during start-up at a planar contact are presented for four different lubrication conditions. The various patterns of transient behavior are discussed. Difficulties in interpreting static friction coefficients during rapidly applied tangential loads are described in relation to the motion data. It is shown that a molybdenum disulphide grease yields a friction characteristic that is quite different from either dry or boundary lubricated conditions in the presence of liquid lubricants. Transition distances from a static or maximum initial friction to kinetic conditions are examined and found to be considerably longer than had been previously found for concentrated contacts. Some suggestions regarding future studies of unsteady friction behavior are made.


Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

An experimental investigation was conducted to study the effects of clamped length and loading direction on the self-loosening behavior of bolted joints. Specially designed fixtures were used for the study. The experiments mimicked two plates jointed by an M12×1.75 Class 10.9 bolt and a nut. The joints were subjected to cyclic external loading. A constant preload of 25 kN was used for all the experiments conducted. During an experiment, the relative displacement between the two clamped plates, δ, was a controlling parameter. The reduction in clamping force, the applied transverse load, and the nut rotation were measured cycle by cycle. The relationship between, Δδ/2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening is referred to as self-loosening curve and was obtained for different clamped lengths and applied load directions. Similar to a fatigue curve, an endurance limit can be identified from the self-loosening curve. It was found that increasing the clamped length can enhance the self-loosening endurance limits in terms of the controlled relative displacement of the two clamped plates. However, the load carrying capability was not influenced significantly due to the thickness of the clamped plates. For a given bolted jointed structure, an angle of the external load from the pure shearing direction resulted in an increase in self-loosening resistance.


Author(s):  
Shinji Hashimura ◽  
Toshiumi Miki ◽  
Takefumi Otsu ◽  
Kyoichi Komatsu ◽  
Shota Inoue ◽  
...  

In bolted joints, clamp force must be accurately controlled to secure their reliability. However, the clamp force varies widely in each tightening because friction coefficients at thread surfaces and bearing surfaces vary in each tightening due to lubricants, configuration error of bolts, surface roughness, and surface hardness, among other things. In this study, we investigated the robustness of polyisobutylene and ISO VG46 machine oil during the tightening process for several parameters of tightening conditions. We especially focused on variations of the friction coefficient between bearing surfaces at an appropriate target clamp force of M8 bolt/nut assemblies and change rates of the friction coefficients from the middle to the end of the appropriate target clamp force. Results showed that the friction coefficients at the target clamp force varied widely if ISO VG46 machine oil was used as a lubricant. In contrast, the variations of the friction coefficients in which polyisobutylene was used for tightening were small. Results also showed that the friction coefficients invariably decreased about 20% from the middle to the end of the target clamp force if ISO VG46 machine oil was used for the lubricant. However, if polyisobutylene was used, the friction coefficients were almost constant for all tightening instances.


2005 ◽  
Vol 128 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

An experimental investigation was conducted to study the effects of clamped length and loading direction on the self-loosening behavior of bolted joints by using specially designed fixtures. The experiments mimicked two plates jointed by an M12×1.75 class 10.9 bolt and a nut. The joints were subjected to cyclic external loading. A constant preload of 25kN was used for all the experiments conducted. During an experiment, the relative displacement between the two clamped plates, δ, was a controlling parameter. The reduction in clamping force, the applied transverse load, and the nut rotation were measured cycle by cycle. The relationship between, Δδ∕2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening is referred to as self-loosening curve and was obtained for different clamped lengths and applied load directions. Similar to a fatigue curve, an endurance limit can be identified from the self-loosening curve. It was found that increasing the clamped length can enhance the self-loosening endurance limits in terms of the controlled relative displacement of the two clamped plates. However, the load carrying capability was not influenced significantly due to the thickness of the clamped plates. For a given bolted jointed structure, an angle of the external load from the pure shearing direction resulted in an increase in self-loosening resistance.


Sign in / Sign up

Export Citation Format

Share Document