An Experimental Investigation of the Effects of Clamped Length and Loading Direction on Self-Loosening of Bolted Joints

Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

An experimental investigation was conducted to study the effects of clamped length and loading direction on the self-loosening behavior of bolted joints. Specially designed fixtures were used for the study. The experiments mimicked two plates jointed by an M12×1.75 Class 10.9 bolt and a nut. The joints were subjected to cyclic external loading. A constant preload of 25 kN was used for all the experiments conducted. During an experiment, the relative displacement between the two clamped plates, δ, was a controlling parameter. The reduction in clamping force, the applied transverse load, and the nut rotation were measured cycle by cycle. The relationship between, Δδ/2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening is referred to as self-loosening curve and was obtained for different clamped lengths and applied load directions. Similar to a fatigue curve, an endurance limit can be identified from the self-loosening curve. It was found that increasing the clamped length can enhance the self-loosening endurance limits in terms of the controlled relative displacement of the two clamped plates. However, the load carrying capability was not influenced significantly due to the thickness of the clamped plates. For a given bolted jointed structure, an angle of the external load from the pure shearing direction resulted in an increase in self-loosening resistance.

2005 ◽  
Vol 128 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

An experimental investigation was conducted to study the effects of clamped length and loading direction on the self-loosening behavior of bolted joints by using specially designed fixtures. The experiments mimicked two plates jointed by an M12×1.75 class 10.9 bolt and a nut. The joints were subjected to cyclic external loading. A constant preload of 25kN was used for all the experiments conducted. During an experiment, the relative displacement between the two clamped plates, δ, was a controlling parameter. The reduction in clamping force, the applied transverse load, and the nut rotation were measured cycle by cycle. The relationship between, Δδ∕2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening is referred to as self-loosening curve and was obtained for different clamped lengths and applied load directions. Similar to a fatigue curve, an endurance limit can be identified from the self-loosening curve. It was found that increasing the clamped length can enhance the self-loosening endurance limits in terms of the controlled relative displacement of the two clamped plates. However, the load carrying capability was not influenced significantly due to the thickness of the clamped plates. For a given bolted jointed structure, an angle of the external load from the pure shearing direction resulted in an increase in self-loosening resistance.


Author(s):  
Yanyao Jiang ◽  
Ming Zhang ◽  
Tae-Won Park ◽  
Chu-Hwa Lee

The self-loosening process of a bolted joint consists of two distinct stages. The early stage of self-loosening is due to the cyclic plastic deformation of the materials. The second stage of self-loosening is characterized by the backing off of the nut. The current study is concentrated on the experimental investigation of the second stage of self-loosening with the aim to explore the mechanisms responsible for the phenomenon. Over a hundred bolted joints were experimentally tested using a specially designed testing apparatus. M12×1.75 bolts and nuts were used. The experiments mimicked two plates jointed by a bolt and a nut and were subjected to cyclic transverse shear loading. During an experiment, the relative displacement between the two clamped plates, denoted by δ, was a control parameter. The clamping force, the relative rotation between the nut and the bolt, and the applied transverse load were monitored and recorded for each loading cycle. For a given preload, the relationship between, Δδ/2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening followed a pattern similar to a fatigue curve. There existed an endurance limit below which self-loosening would not persist. A larger preload resulted in a larger endurance limit. However, a large preload increased the possibility for the bolt to fail in fatigue. It was found that the surface condition, which influenced the friction coefficient, had a significant influence on self-loosening resistance. The results also reveal that the use of a regular nut is superior to the use of a flange nut in terms of self-loosening resistance. An “endurance diagram” concept was developed that can be used directly for the design and evaluation of the bolted joints.


2004 ◽  
Vol 126 (5) ◽  
pp. 925-931 ◽  
Author(s):  
Yanyao Jiang ◽  
Ming Zhang ◽  
Tae-Won Park ◽  
Chu-Hwa Lee

The self-loosening process of a bolted joint consists of two distinct stages. The early stage of self-loosening is due to the cyclic plastic deformation of the materials. The second stage of self-loosening is characterized by the backing off of the nut. The current work is concentrated on an experimental investigation of the second stage self-loosening. Over one hundred bolted joints with M12×1.75 bolts and nuts were experimentally tested using a specially designed testing apparatus. The experiments mimicked two plates jointed by a bolt and a nut and were subjected to cyclic transverse shear loading. During an experiment, the relative displacement between the two clamped plates, denoted by δ, was a controlling parameter. For a given preload, the relationship between, Δδ/2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening followed a pattern similar to a fatigue curve. There existed an endurance limit below which self-loosening would not persist. A larger preload resulted in a larger endurance limit. However, a large preload increased the possibility for the bolt to fail in fatigue. The results suggest that the use of a regular nut is superior to the use of a flange nut in terms of self-loosening resistance.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110394
Author(s):  
Oybek Maripjon Ugli Eraliev ◽  
Yi-He Zhang ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

The most commonly used part in engineering fields is threaded fasteners. There are a lot of advantages of fasteners. One of them is that they can be easily disassembled and reused, but a bolted joint can loosen easily when a transversal load is applied. The clamp load of a bolted joint can also loosen slowly when subjected to repeated temperature changes. This paper presents an experimental investigation of the self-loosening of bolted joints under cyclical temperature variation. Experiments are carried out under several cyclical temperature changes with different bolt preloads. Rectangular threaded bolted joints with M12 × 1.75 bolts and nuts are tested in a specially designed testing apparatus. Material of bolt, nut, and plates is a stainless steel. The experimental results show that the high initial bolt preload may prevent the joint from self-loosening and the bolted joint has loosened significantly in the first cycle of temperature changes. From this investigation, the loosening of the bolted joint can be considered as a first stage self-loosening.


2021 ◽  
Author(s):  
Yasumasa Shoji

Abstract Self-loosening behavior is a topic which many researchers are tackling and the principle is coming clearer. Self-loosening occurs mainly when transverse load is applied to the bolt/nut system and the loosening also occurs when such other loads are applied as impact of the bolt (NAS3350 test type) or temperature difference between bolt and nut. The author reproduced the phenomena by using finite element analyses and found the self-loosening is caused by radial relative displacement between bolt and nut threads. On the other hand, some researchers say the self-loosening occur when the tension changes repeatedly while others say it doesn’t. This axial force phenomenon is not yet clear even in experiment. In this paper, the self-loosening phenomenon by the tension change is examined using Finite Element Analyses. The results show that the self-loosening depends on the inclination of the bearing surface. The loosening does not occur when the inclination of the bearing surface is small enough and it occurs when the inclination is large. As the inclination of the bolt head and nut is allowed within the engineering tolerance and flanges rotate when it fastened making the bolt head or nut bearing surface inclination, the self-loosening may happen for any bolts in nature if tension changes repeatedly.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.


2021 ◽  
Author(s):  
Stefano Fini ◽  
Massimiliano De Agostinis ◽  
Dario Croccolo ◽  
Giorgio Olmi ◽  
Francesco Robusto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document