Recent Advances in Optical-Based Non-Contact Full-Field Damage Visualization for Composite Structures

2021 ◽  
Author(s):  
Fuh-gwo Yuan ◽  
Rey-Yie Fong
2019 ◽  
Vol 9 (13) ◽  
pp. 2719 ◽  
Author(s):  
Farjad Shadmehri ◽  
Suong Van Hoa

Since its advent in the 1970s, digital image correlation (DIC) applications have been rapidly growing in different engineering fields including composite material testing and analysis. DIC combined with a stereo camera system offers full-field measurements of three-dimensional shapes, deformations (i.e., in-plane and out-of-plane deformations), and surface strains, which are of most interest in many structural testing applications. DIC systems have been used in many conventional structural testing applications in composite structures. However, DIC applications in automated composite manufacturing and inspection are scarce. There are challenges in inspection of a composite ply during automated manufacturing of composites and in measuring transient strain during in-situ manufacturing of thermoplastic composites. This article presents methodologies using DIC techniques to address these challenges. First, a few case studies where DIC was used in composite structural testing are presented, followed by development of new applications for DIC in composite manufacturing and inspection.


2013 ◽  
Vol 550 ◽  
pp. 135-142
Author(s):  
Elodie Péronnet ◽  
Marie Laetitia Pastor ◽  
Richard Huillery ◽  
Olivier Dalverny ◽  
Sébastien Mistou ◽  
...  

This paper presents different interests of non destructive full-field measurement. More precisely, it focuses on the characterization and the comparison of the X-ray tomography and two methods of infrared thermography in order to define the defect detection limits and to precise the specific application fields for each technique on multi-layered and sandwich composite structures. The obtained results are qualitatively and quantitatively analyzed.


2011 ◽  
Vol 121-126 ◽  
pp. 1264-1268 ◽  
Author(s):  
Hui Juan Feng ◽  
Jian Zhang ◽  
Xiang Kai Liu

This paper reviews shearography and its applications for testing of aircraft composite structures and honeycomb-based specimen. Shearography is a laser-based interferometry in conjunction with the digital imaging processing technique for full-field measurement of surface deformation. It reveals defects in an object by looking for defect-induced deformation anomalies. It does not require special vibration isolation, and with the development of a small and mobile measuring device (portable inspection system), it can be employed easily in field/factory environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Viviana Meruane ◽  
Diego Aichele ◽  
Rafael Ruiz ◽  
Enrique López Droguett

The vibrational behavior of composite structures has been demonstrated as a useful feature for identifying debonding damage. The precision of the damage localization can be greatly improved by the addition of more measuring points. Therefore, full-field vibration measurements, such as those obtained using high-speed digital image correlation (DIC) techniques, are particularly useful. In this study, deep learning techniques, which have demonstrated excellent performance in image classification and segmentation, are incorporated into a novel approach for assessing damage in composite structures. This article presents a damage-assessment algorithm for composite sandwich structures that uses full-field vibration mode shapes and deep learning. First, the vibration mode shapes are identified using high-speed 3D DIC measurements. Then, Gaussian process regression is implemented to estimate the mode shape curvatures, and a baseline-free gapped smoothing method is applied to compute the damage images. The damage indices, which are represented as grayscale images, are processed using a convolutional-neural-network-based algorithm to automatically identify damaged regions. The proposed methodology is validated using numerical and experimental data from a composite sandwich panel with different damage configurations.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 523 ◽  
Author(s):  
Gábor Szebényi ◽  
Viktor Hliva

Fiber-reinforced polymer composite structures are frequently used in industries where personal safety is critical; therefore, it is important to periodically estimate or monitor the condition of high value, load bearing structures. The digital image correlation (DIC) is well known as an effective method to obtain full field surface strains; in this paper, it was used to detect artificial damage inside the structures. Carbon or glass fabric reinforced epoxy specimens were produced and tested. All specimens contained an artificial through-delamination which was created by the insertion of different foils of a mould release agent during production. Tensile and compression tests were done while the camera system collected the images of the deformed surface to be analyzed posteriorly. In most cases the approximate locations of delaminations could be effectively detected from strain maps by the localization of zones showing different strain values than intact zones.


2013 ◽  
Vol 569-570 ◽  
pp. 3-10 ◽  
Author(s):  
Janice M. Dulieu-Barton ◽  
R.K. Fruehmann ◽  
Simon Quinn

This paper describes the development of a stress / strain based in-situ damage inspection strategy focused around, but not exclusively, using thermoelastic stress analysis (TSA). The underlying philosophy is that defects and damage in a component or structure only constitute a cause for concern if these influence the stress field, i.e. the defect or damage acts as a stress raiser that reduces the service load limit. To assess this, it is necessary for the inspection method to map the distribution of stresses in the component, rather than the location and extent of an irregularity in the material. Imaging based techniques, such as TSA, digital image correlation (DIC) or digital speckle pattern interferometry (DSPI) provide non-contact maps of the surface stresses, deformations and/or strains. The full field data enables the engineer to evaluate if stress concentrations are present within the structure and, if data from a previous inspection is available, to assess if the distribution of stresses within the structure has changed from a previous 'undamaged' state. One of the key issues addressed in the current work has been the transition from a standard test setup, as typically used in laboratory work, to a more flexible (portable) setup relevant to industry requirements, e.g. site inspections. An approach that enables similar resolution (by comparison to current laboratory standard setups) stress and strain data to be captured using natural frequency excitation of a structure has been demonstrated on various full scale components.


Sign in / Sign up

Export Citation Format

Share Document