Thermal Characterization of Electronic Packages Using a Three-Dimensional Fourier Series Solution

2000 ◽  
Vol 122 (3) ◽  
pp. 233-239 ◽  
Author(s):  
J. R. Culham ◽  
M. M. Yovanovich ◽  
T. F. Lemczyk

The need to accurately predict component junction temperatures on fully operational printed circuit boards can lead to complex and time consuming simulations if component details are to be adequately resolved. An analytical approach for characterizing electronic packages is presented, based on the steady-state solution of the Laplace equation for general rectangular geometries, where boundary conditions are uniformly specified over specific regions of the package. The basis of the solution is a general three-dimensional Fourier series solution which satisfies the conduction equation within each layer of the package. The application of boundary conditions at the fluid-solid, package-board and layer-layer interfaces provides a means for obtaining a unique analytical solution for complex IC packages. Comparisons are made with published experimental data for both a plastic quad flat package and a multichip module to demonstrate that an analytical approach can offer an accurate and efficient solution procedure for the thermal characterization of electronic packages. [S1043-7398(00)01403-1]

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


2018 ◽  
Vol 15 (3) ◽  
pp. 117-125 ◽  
Author(s):  
Bharath R. Bharadwaj ◽  
SriNithish Kandagadla ◽  
Praveen J. Nadkarni ◽  
V. Krishna ◽  
T. R. Seetharam ◽  
...  

Abstract The need for compactness and efficiency of processing devices has kept increasing rapidly over the past few years. This need for compactness has driven the dice to be stacked one above the other. But with this come the difficulty of heat dissipation and its characterization because there are multiple heat sources and a single effective heat-conductive path. Hence, it becomes important to know the distribution and characterization of heat and temperature to provide effective cooling systems. In this article, we discuss the temperature distribution of various power configurations on stacked dice with five dice, when the dice are in staggered arrangement. The simulations have been carried out for both free convection and forced convection conditions using the ANSYS commercial software. The linear Superposition principle (LSP) is demonstrated on these configurations and validated with the results obtained from ANSYS simulation. LSP can be applied for the quick estimation of die temperatures with negligible error.


2020 ◽  
Vol 56 (11) ◽  
Author(s):  
Sara Tabrizinejadas ◽  
Marwan Fahs ◽  
Behzad Ataie‐Ashtiani ◽  
Craig T. Simmons ◽  
Raphaël Chiara Roupert ◽  
...  

2019 ◽  
Vol 31 (8) ◽  
pp. 1779-1784
Author(s):  
V. Mohanraj ◽  
R. Pavithra ◽  
M. Thenmozhi ◽  
R. Umarani

Phenyl trimethylammonium tetrachlorocobaltate, crystals were grown by slow evaporation technique. The crystal was bright, transparent. The three dimensional structure of the phenyl trimethylammonium tetrachlorocobaltate was obtained from single crystal X-ray diffraction studies. The molecule belongs to monoclinic crystal system with C2/c space group. The presence of functional groups and modes of vibrations were identified by FT-IR spectroscopy. 1H NMR spectroscopy was also used to characterise the compound and the thermal stability of the crystal was established by TGA/DT analysis. This work undergoes phase transition which makes the study interesting.


2020 ◽  
Vol 20 (07) ◽  
pp. 2071005
Author(s):  
Y. B. Yang ◽  
Y. Z. Liu

Lateral buckling of cantilevered circular arches under various end moments is studied using an analytical approach. Three types of conservative moments are considered, i.e. the quasi-tangential moments of the 1st and 2nd kinds, and the semi-tangential moment. The induced moments associated with each of the moment mechanisms undergoing three-dimensional rotations are included in the Newman boundary conditions. Using the differential equations available for the out-of-plane buckling of curved beams, the analytical solutions are derived for a cantilevered circular arch, which can be used as the benchmarks for calibration of other methods of analysis.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1740 ◽  
Author(s):  
Yifeng Fu ◽  
Guofeng Cui ◽  
Kjell Jeppson

The design, fabrication, and use of a hotspot-producing and temperature-sensing resistance thermometer for evaluating the thermal properties of low-dimensional materials are described in this paper. The materials that are characterized include one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene and boron nitride films. The excellent thermal performance of these materials shows great potential for cooling electronic devices and systems such as in three-dimensional (3D) integrated chip-stacks, power amplifiers, and light-emitting diodes. The thermometers are designed to be serpentine-shaped platinum resistors serving both as hotspots and temperature sensors. By using these thermometers, the thermal performance of the abovementioned emerging low-dimensional materials was evaluated with high accuracy.


2013 ◽  
Vol 44 (11) ◽  
pp. 1019-1024 ◽  
Author(s):  
Marcin Janicki ◽  
Tomasz Torzewicz ◽  
Zbigniew Kulesza ◽  
Andrzej Napieralski

2016 ◽  
Vol 138 (1) ◽  
Author(s):  
Michael Fish ◽  
Patrick McCluskey ◽  
Avram Bar-Cohen

As thermal management techniques for three-dimensional (3D) chip stacks and other high-power density electronic packages continue to evolve, interest in the thermal pathways across substrates containing a multitude of conductive vias has increased. To reduce the computational costs and time in the thermal analysis of through-layer via (TXV) structures, much research to date has focused on defining effective anisotropic thermal properties for a pseudohomogeneous medium using isothermal boundary conditions. While such an approach eliminates the need to model heat flow through individual vias, the resulting properties are found to depend on the specific boundary conditions applied to a unit TXV cell. More specifically, effective properties based on isothermal boundary conditions fail to capture the local “microspreading” resistance associated with more realistic heat flux distributions and local hot spots on the surface of these substrates. This work assesses how the thermal microspreading resistance present in arrays of vias in interposers, substrates, and other package components can be properly incorporated into the modeling of these arrays. We present the conditions under which spreading resistance plays a major role in determining the thermal characteristics of a via array and propose methods by which designers can both account for the effects of microspreading resistance and mitigate its contribution to the overall thermal behavior of such substrate–via systems. Finite element modeling (FEM) of TXV unit cells is performed using commercial simulation software (ansys).


Sign in / Sign up

Export Citation Format

Share Document