Thermoeconomic Analysis on the Performance Characteristics of a Multi-Stage Irreversible Combined Heat Pump System

2000 ◽  
Vol 122 (4) ◽  
pp. 212-216 ◽  
Author(s):  
Jincan Chen ◽  
Chih Wu

A cycle model of a multi-stage combined heat pump system, which includes the irreversibility of finite rate heat transfer across finite temperature differences and the irreversibilities inside the working fluid, is established and used to investigate the influence of these irreversibilities on the performance of the system. The profit of operating the heat pump system is taken as an objective function for optimization. The maximum profit is calculated for a given total heat transfer area or total thermal conductance of heat exchangers. The coefficient of performance, heating load, and power input at the maximum profit are determined. The distribution of the heat transfer areas or the thermal conductances of heat exchangers and the temperature ratios of the working fluids of two adjacent cycles in heat exchange processes are optimized. The results obtained here are generally significant. They are suitable for an arbitrary-stage irreversible and endo- reversible combined heat pump system. [S0195-0738(00)01104-3]

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1762 ◽  
Author(s):  
Zhe Wang ◽  
Fenghui Han ◽  
Yulong Ji ◽  
Wenhua Li

A marine seawater source heat pump is based on the relatively stable temperature of seawater, and uses it as the system’s cold and heat source to provide the ship with the necessary cold and heat energy. This technology is one of the important solutions to reduce ship energy consumption. Therefore, in this paper, the heat exchanger in the CO2 heat pump system with graphene nano-fluid refrigerant is experimentally studied, and the influence of related factors on its heat transfer enhancement performance is analyzed. First, the paper describes the transformation of the heat pump system experimental bench, the preparation of six different mass concentrations (0~1 wt.%) of graphene nanofluid and its thermophysical properties. Secondly, this paper defines graphene nanofluids as beneficiary fluids, the heat exchanger gains cold fluid heat exergy increase, and the consumption of hot fluid heat is heat exergy decrease. Based on the heat transfer efficiency and exergy efficiency of the heat exchanger, an exergy transfer model was established for a seawater source of tube heat exchanger. Finally, the article carried out a test of enhanced heat transfer of heat exchangers with different concentrations of graphene nanofluid refrigerants under simulated seawater constant temperature conditions and analyzed the test results using energy and an exergy transfer model. The results show that the enhanced heat transfer effect brought by the low concentration (0~0.1 wt.%) of graphene nanofluid is greater than the effect of its viscosity on the performance and has a good exergy transfer effectiveness. When the concentration of graphene nanofluid is too high, the resistance caused by the increase in viscosity will exceed the enhanced heat transfer gain brought by the nanofluid, which results in a significant decrease in the exergy transfer effectiveness.


Author(s):  
Michael J. Kazmierczak ◽  
Abhishek Gupta

Experiments were performed on a heat exchanger equipped with multiple thermoelectric (TE) modules. The TE-HX serves as the basic system component in a simple hydronic modular Peltier heat pump system designed to provide chilled or hot water for domestic use (or supplementary building climate control) of small residences [1]. The present work focuses on the detailed convection analysis inside the TE-HX component when 10 thermoelectric modules are utilized. The local heat transfer coefficient at different points along the channel are measured at steady-state, first, when a continuous heater is installed and then when replaced with 10 TE modules. The experimental heat transfer coefficients obtained are compared with available empirical correlations for “transition” (3000 < ReDh < 7000) turbulent flow inside the channel with fair-to-good results. Next, the resulting coefficient-of-performance of the TE heat pump system is measured with its value depending both on system input power and water flow rate. Testing showed that performance degradation, i.e. reduced COPs, occurred when operated at higher power levels but remains satisfactory for up to 688 Watts with higher flow rate.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Jieun Song ◽  
Jung Chan Park ◽  
Kil Young Kim ◽  
Jinhee Jeong ◽  
Seung Jin Song

A typical turbo heat pump system consists of a centrifugal compressor, expansion valve, and two heat exchangers—a condenser and evaporator. Compared to a gas turbine, a turbo heat pump introduces additional complexities because it is a two-phase closed-loop system with heat exchange using a real gas/liquid (refrigerant) as the working fluid. For the first time, surge onset in such systems has been physically, analytically, and experimentally investigated. This study analytically investigates the physical mechanisms of surge onset in turbo heat pumps. From an existing nonlinear turbo heat pump surge model, the turbo heat pump is viewed as a mass-spring-damper system with two inertias, two dampers, and four springs which is then further simplified to a single degree-of-freedom system. Surge onset occurs when the system damping becomes zero and depends not only the compressor but also on the ducts, heat exchangers, and expansion valve. Alternatively, a new stability model has been developed by applying a linearized small perturbation method to the nonlinear turbo heat pump surge model. When the new linear stability model is applied to a conventional open loop compression system (e.g., a turbocharger), predictions identical to those of Greitzer's model are obtained. In addition, surge onset has been experimentally measured in two turbo heat pumps. A comparison of the predictions and measurements shows that the mass-spring-damper model and the linearized stability model can accurately predict the turbo heat pump surge onset and the mass-spring-damper model can explain the turbo heat pump surge onset mechanisms and parametric trends in turbo heat pumps.


2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 3877-3886
Author(s):  
Shuxue Xu ◽  
Jianhui Niu ◽  
Guoyuan Ma

In this paper, an integrated vapor injection compression heat pump system using R1234yf, R32, R410A, R22, and R134a as working fluids was developed, and their heating performances under low ambient temperature were quantitatively evaluated. An experimental bench was built to test the system?s working performance. The condensing temperature, evaporating temperature, power input, and other variables were analyzed to evaluate the system?s heating capability and energy efficiency. Test results showed that the R1234yf system can run at the evaporating temperature of ?20 ?C, but its heating coefficient of performance was 5% lower than R134a. The R1234yf vapor injection system provided very significant performance improvements for heating performance compared with no vapor injection: the heating capacity and heating coefficient of performance can be improved by 14.3% and 11.7%, respectively.


2017 ◽  
Vol 76 ◽  
pp. 394-405 ◽  
Author(s):  
Kejuan Wei ◽  
Wenxin Li ◽  
Jiarong Li ◽  
Yong Wang ◽  
Lu Zhang

1999 ◽  
Author(s):  
D. A. Kouremenos ◽  
E. D. Rogdakis ◽  
G. K. Alexis

Abstract Absorption system have been investigated for many years. However, coefficient of performance COP or heat gain factor HGF for absorption systems are significantly lower than those for conventional compression systems. This has restricted their wide application. This paper discusses the behavior of mixture NH3-H2O through of an ejector, operating in an absorption heat pump system. This combination improves the performance of conventional absorption system and with the phasing out of ozone-damaging refrigerants, absorption refrigerators, heat pumps and air-conditioning now provide a potential alternative. For the detailed calculation of the proposed system a method has been developed, which employs analytical functions describing the thermodynamic properties of die mixture. The influence of three major parameters: generator, condenser and evaporator temperature, on ejector efficiency and heat gain factor of the system is discussed. Also the maximum value of HGF was estimated by correlation of above three temperatures.


Sign in / Sign up

Export Citation Format

Share Document