scholarly journals Elevated-Temperature Mechanical Properties of an Advanced-Type 316 Stainless Steel1

2000 ◽  
Vol 123 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Charles R. Brinkman

Type 316FR stainless steel is a candidate material for the Japanese demonstration fast breeder reactor plant to be built in Japan early in the next century. Like type 316L(N), it is a low-carbon grade of stainless steel with a more closely specified nitrogen content and chemistry optimized to enhance elevated-temperature performance. Early in 1994, under sponsorship of The Japan Atomic Power Company, work was initiated at Oak Ridge National Laboratory (ORNL) aimed at obtaining an elevated-temperature mechanical-properties database on a single heat of this material. The product form was 50-mm plate manufactured by the Nippon Steel Corporation. Data include results from long-term creep-rupture tests conducted at temperatures of 500 to 600°C with test times up to nearly 40.000 h, continuous-cycle strain-controlled fatigue test results over the same temperature range, limited creep-fatigue data at 550 and 600°C, and tensile test properties from room temperature to 650°C. The ORNL data were compared with data obtained from several different heats and product forms of this material obtained at Japanese laboratories. The data were also compared with results from predictive equations developed for this material and with data available for types 316 and 316L(N) stainless steel.

Author(s):  
Philip J. Maziasz ◽  
Bruce A. Pint

Covers and casings of small to medium size gas turbines, can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory (ORNL) and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, that is a fully-austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increasing the alloy solubility for N, and both Mn and N act synergistically to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600°–900°C, which compares well with Ni-based superalloys like alloys X, 625, 617 and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas-turbine and microturbine casings. The purpose of this paper is to demonstrate some of the mechanical properties and update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.


Author(s):  
Philip J. Maziasz ◽  
Bruce A. Pint

Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600–900°C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract AK Steel Type 304L is a chromium-nickel austenitic stainless steel. It is an extra low-carbon variation of Type 304 with a 0.030% maximum carbon content that eliminates carbide precipitation due to welding. As a result, this alloy can be used in the “as-welded” condition, even in severe corrosive conditions. In many cases it eliminates the necessity of annealing weldments except for applications specifying stress relief. Type 304L has slightly lower mechanical properties than Type 304. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance, corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1324. Producer or Source: AK Steel Corporation.


2009 ◽  
Vol 413-414 ◽  
pp. 725-732 ◽  
Author(s):  
Xiao Cong He

The aim of this study is to investigate the creep-fatigue behavior of stainless steel materials. Based on the elevated-temperature tensile, creep and rupture test data, thermal creep-fatigue modelling was conducted to predict the failure life of stainless steels. In the low cycle thermal fatigue life model, Manson’s Universal Slopes equation was used as an empirical correlation which relates fatigue endurance to tensile properties. Fatigue test data were used in conjunction with different modes to establish the relationship between temperature and other parameters. Then creep models were created for stainless steel materials. In order to correlate the results of short-time elevated temperature tests with long-term service performance at more moderate temperatures, different creep prediction models, namely Basquin model, Sherby-Dorn model and Manson-Haferd model, were studied. Comparison between the different creep prediction models were carried out for a range of stresses and temperatures. A linear damage summation method was used to establish life prediction model of stainless steel materials under creep-fatigue.


Author(s):  
Randy K. Nanstad ◽  
Mikhail A. Sokolov

Boric acid attack in the reactor pressure vessel (RPV) head of the Davis-Besse (D-B) nuclear plant led to wastage through the 150-mm low alloy steel head such that the stainless steel cladding was exposed. The Heavy-Section Steel Technology (HSST) Program at Oak Ridge National Laboratory was commissioned by the Nuclear Regulatory Commission to conduct a program of testing and analysis to enable an evaluation of the structural significance of cladding defects found in the wastage cavity of the D-B head. The overall test program consisted of material characterization at 316°C (600°F) of cladding materials, pressure vessel burst tests of cladding discs with and without flaws, and extensive analytical studies. Three different cladding materials were tested and evaluated, one from an unused commercial RPV that was used for the clad-burst experiments, an archival cladding previously used for various experimental and irradiation experiments, and the cladding from the D-B head. This paper compares and discusses the fracture toughness test results conducted with the three claddings, and the fractographic analyses conducted on the clad-burst discs. Comparison of J-resistance curves for the three clad materials shows significant material variability and disparity in the results from two test specimen types. Fractographic examinations of clad-burst discs showed transition from ductile tearing to shear mode of fracture. The relationship of the cladding test results with the clad-burst results is discussed.


Sign in / Sign up

Export Citation Format

Share Document