Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal

2000 ◽  
Vol 123 (2) ◽  
pp. 342-352 ◽  
Author(s):  
A. Pfau ◽  
M. Treiber ◽  
M. Sell ◽  
G. Gyarmathy

The structure of labyrinth cavity flow has been experimentally investigated in a three fin axial turbine labyrinth seal (four cavities). The geometry corresponds to a generic steam turbine rotor shroud. The relative wall motion has not been modeled. The measurements were made with specially developed low-blockage pneumatic probes and extensive wall pressure mapping. Instead of the classical picture of a circumferentially uniform leakage sheet exiting from the last labyrinth clearance, entering the channel, and uniformly spreading over the downstream channel wall, the results reveal uneven flow and the existence of high circumferential velocity within the entire exit cavity. The circumferential momentum is brought into the cavity by swirling fluid from the main channel. This fluid penetrates the cavity and breaks up the leakage sheet into individual jets spaced according to the blade passages. This gives rise to strong local cross flows that may also considerably disturb the performance of a downstream blade row.

Author(s):  
A. Pfau ◽  
M. Treiber ◽  
M. Sell ◽  
G. Gyarmathy

The structure of labyrinth cavity flow has been experimentally investigated in a three fin axial turbine labyrinth seal (four cavities). The geometry corresponds to a generic steam turbine rotor shroud. The relative wall motion has not been modeled. The measurements were made with specially developed low-blockage pneumatic probes and extensive wall pressure mapping. Instead of the classical picture of a circumferentially uniform leakage sheet exiting from the last labyrinth clearance, entering the channel, and uniformly spreading over the downstream channel wall, the results reveal uneven flow and the existence of high circumferential velocity within the entire exit cavity. The circumferential momentum is brought into the cavity by swirling fluid from the main channel. This fluid penetrates the cavity and breaks up the leakage sheet into individual jets spaced according to the blade passages. This gives rise to strong local cross flows that may also considerably disturb the performance of a downstream blade row.


Author(s):  
Tobias R. Müller ◽  
Damian M. Vogt ◽  
Klemens Vogel ◽  
Bent A. Phillipsen

The present numerical study aims at examining the influence of intrarow interaction effects in aerodynamic damping predictions of an axial turbine rotor. The investigated operating point corresponds to a resonance crossing associated with the fundamental engine order of the stator blade row. Accordingly, the pressure perturbations induced by the vibration of the rotor at its modal frequency are found to be coincident in frequency and thus superimpose with the pressure perturbations resulting from intrarow interaction phenomena. A methodology for extracting vibration induced pressure perturbations for the subsequent calculation of the vibration induced modal aerodynamic damping is established and applied within the scope of the present study. Applying this methodology, both the influence of the underlying mean and transient flow field as well as the influence of acoustic wave reflections at the adjacent stator blade row is investigated on the predicted aerodynamic damping. In this context, the underlying mean flow field, which is found to be slightly altered in the presence of intrarow interaction phenomena, was proven to have a significant influence on vibration induced pressure perturbations. Moreover, acoustic wave reflections at the adjacent stator blade row are found to have the capability of influencing the aerodynamic damping depending on their actual phasing when impinging onto the turbine rotor.


Author(s):  
A. Pfau ◽  
J. Schlienger ◽  
D. Rusch ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper focuses on the flow within the inlet cavity of a turbine rotor tip labyrinth seal of a 2 stage axial research turbine. Highly resolved, steady and unsteady 3-dimensional flow data are presented. The probes used here are a miniature 5 hole probe of 0.9mm head diameter and the novel virtual four sensor fast response aerodynamic probe (FRAP) with a head diameter of 0.84mm. The cavity flow itself is not only a loss producing area due to mixing and vortex stretching, it also adversely affects the following rotor passage through the fluid that is spilled into the main flow. The associated fluctuating mass flow has a relatively low total pressure and results in a negative incidence to the rotor tip blade profile section. The dominating kinematic flow feature in the region between cavity and main flow is a toroidal vortex, which is swirling at high circumferential velocity. It is fed by strong shear and end wall fluid from the pressure side of the stator passage. The static pressure field interaction between the moving rotor leading edges and the stator trailing edges is one driving force of the cavity flow. It forces the toroidal vortex to be stretched in space and time. A comprehensive flow model including the drivers of this toroidal vortex is proposed. This labyrinth seal configuration results in about 1.6% turbine efficiency reduction. This is the first in a series of papers focussing on turbine loss mechanisms in shrouded axial turbines. Additional measurements have been made with variations in seal clearance gap. Initial indications show that variation in the gap has a major effect on flow structures and turbine loss.


2003 ◽  
Vol 127 (4) ◽  
pp. 679-688 ◽  
Author(s):  
A. Pfau ◽  
J. Schlienger ◽  
D. Rusch ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper focuses on the flow within the inlet cavity of a turbine rotor tip labyrinth seal of a two stage axial research turbine. Highly resolved, steady and unsteady three-dimensional flow data are presented. The probes used here are a miniature five-hole probe of 0.9 mm head diameter and the novel virtual four sensor fast response aerodynamic probe (FRAP) with a head diameter of 0.84mm. The cavity flow itself is not only a loss producing area due to mixing and vortex stretching, it also adversely affects the following rotor passage through the fluid that is spilled into the main flow. The associated fluctuating mass flow has a relatively low total pressure and results in a negative incidence to the rotor tip blade profile section. The dominating kinematic flow feature in the region between cavity and main flow is a toroidal vortex, which is swirling at high circumferential velocity. It is fed by strong shear and end wall fluid from the pressure side of the stator passage. The static pressure field interaction between the moving rotor leading edges and the stator trailing edges is one driving force of the cavity flow. It forces the toroidal vortex to be stretched in space and time. A comprehensive flow model including the drivers of this toroidal vortex is proposed. This labyrinth seal configuration results in about 1.6% turbine efficiency reduction. This is the first in a series of papers focusing on turbine loss mechanisms in shrouded axial turbines. Additional measurements have been made with variations in seal clearance gap. Initial indications show that variation in the gap has a major effect on flow structures and turbine loss.


Author(s):  
Daniel Frączek ◽  
Włodzimierz Wróblewski ◽  
Krzysztof Bochon

The aircraft engine operates in various conditions. In consequence, the design of seals must take account of the seal clearance changes and the risk of rubbing. A small radial clearance of the rotor tip seal leads to the honeycomb rubbing in take-off conditions, and the leakage flow may increase in cruise conditions. The aim of this study is to compare two honeycomb seal configurations of the low-pressure gas turbine rotor. In the first configuration, the clearance is small and rubbing occurs. In the second,—the fins of the seal are shorter to eliminate rubbing. It is assumed that the real clearance in both configurations is the same. A study of the honeycomb geometrical model is performed to reduce the computational effort. The problem is investigated numerically using the RANS equations and the two-equation k–ω SST turbulence model. The honeycomb full structure is taken into consideration to show details of the fluid flow. Main parameters of the clearance and leakage flows are compared and discussed for the rotor different axial positions. An assessment of the leakage flow through the seal variants could support the design process.


Author(s):  
Nono Suprayetno ◽  
Priyono Sutikno ◽  
Nathanael P. Tandian ◽  
Firman Hartono

This study aims to design an axial turbine rotor blade and predict the turbine performance at preliminary design stage. Quasi three dimensional method was applied to design including blade to blade flow analysis. The blade profile uses a NACA 0015 airfoil by varying the profile thickness from hub to tip. The profile is divided into eleven segments which has different parameters. The profile was analysed using blade to blade flow/cascade flow analysis called vortex panel method to obtain lift coefficient. The analysis of cascade flow was performed in potential flow and prediction of turbine perfomance is carried out involving common best practice to give drag effect on the blade. The design of the turbine was applied on three different rotors, which also have a different discharge, head, and design rotation. The outer diameter of turbine 1 is 0.65 m, while turbine 2 and turbine 3 have an outer diameter of 0,60 m. The calculation result show that the efficiency of turbines 1, 2, and 3 were 88,32%, 89,67%, and 89,04%, respectively.


Author(s):  
Jan E. Anker ◽  
Ju¨rgen F. Mayer

This paper presents the simulation of the flow in a 1.5 stage low-speed axial turbine with shrouded rotor blades and focuses on the interaction of the labyrinth seal leakage flow with the main flow. The presented results were obtained using the Navier-Stokes code ITSM3D developed at University of Stuttgart. A comparison of the computational results with experimental data of this test case gained at Ruhr-Universita¨t Bochum verifies that the flow solver is capable of reproducing the leakage flow effects to a sufficient extent. The computational results are used to examine the influence of the leakage flow on the flow field of the turbine. By varying the clearance height of the labyrinth in the simulations, the impact of the re-entering leakage flow on the main flow is studied. As demonstrated in this paper, leakage flow not only introduces mixing losses but can also dominate the secondary flow and induce severe losses. In agreement with the experimental data the computational results show that at realistic clearance heights the leakage flow gives rise to negative incidence over a considerable part of the downstream stator which causes the flow to separate.


Author(s):  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost ◽  
A. Giboni ◽  
K. Wolter

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with shrouded rotor blades and a straight through labyrinth seal. The paper focuses on the time dependent influence of the leakage flow on the downstream stator flow field. The experimental program consists of time accurate measurements of the three-dimensional properties of the flow through ten different measurement planes in the stator passage. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes extend from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 4,800 measurement points and 20 time steps per blade passing period. The time-accurate experimental data of the ten measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the flow phenomena. Additionally numerical data behind the rotor is used to connect the entry of the leakage flow with the flow phenomena in the downstream stator passage and behind it. The leakage flow causes strong fluctuations of the flow in the downstream stator. Above all, the high number of measurement points reveals both the secondary flow phenomena and the vortex structures within the blade passage. The time-dependence of both the position and the intensity of the vortices influenced by the leakage flow is shown. The paper shows that even at realistic clearance heights the leakage flow influences considerable parts of the downstream stator and gives rise to negative incidence and flow separation. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbines.


Author(s):  
Roque Corral ◽  
Michele Greco ◽  
Almudena Vega

Abstract The effect of the tip-shroud seal on the flutter onset of a shrouded turbine rotor blade, representative of a modern gas turbine, is numerically tested and the contribution to the work-per-cycle of the aerofoil and the tip-shroud are clearly identified. The numerical simulations are conducted using a linearised frequency domain solver. The flutter stability of the shrouded rotor blade is evaluated for an edgewise mode and compared with the standard industrial approach of not including the tip-shroud cavity. It turns out that including the tip shroud significantly changes the stability prediction of the rotor blade. This is due to the fact that the amplitude of the unsteady pressure created in the inter-fin cavity, due to the motion of the airfoil, is much greater than that of the airfoil. It is concluded that the combined effect of the seal and its platform tends to stabilise the rotor blade for all the examined nodal diameters and reduced frequencies. Finally, the numerical results are shown to be consistent with those obtained using an analytical simplified model to account for the effect of the labyrinth seals.


Sign in / Sign up

Export Citation Format

Share Document