scholarly journals Numerical Simulation of Cascade Flow: Vortex Element Method for Inviscid Flow Analysis and Axial Turbine Blade Design

Author(s):  
Nono Suprayetno ◽  
Priyono Sutikno ◽  
Nathanael P. Tandian ◽  
Firman Hartono

This study aims to design an axial turbine rotor blade and predict the turbine performance at preliminary design stage. Quasi three dimensional method was applied to design including blade to blade flow analysis. The blade profile uses a NACA 0015 airfoil by varying the profile thickness from hub to tip. The profile is divided into eleven segments which has different parameters. The profile was analysed using blade to blade flow/cascade flow analysis called vortex panel method to obtain lift coefficient. The analysis of cascade flow was performed in potential flow and prediction of turbine perfomance is carried out involving common best practice to give drag effect on the blade. The design of the turbine was applied on three different rotors, which also have a different discharge, head, and design rotation. The outer diameter of turbine 1 is 0.65 m, while turbine 2 and turbine 3 have an outer diameter of 0,60 m. The calculation result show that the efficiency of turbines 1, 2, and 3 were 88,32%, 89,67%, and 89,04%, respectively.

1984 ◽  
Vol 106 (2) ◽  
pp. 511-515 ◽  
Author(s):  
E. A. Baskharone

A three-dimensional inviscid flow analysis in the combined scroll-nozzle system of a radial inflow turbine is presented. The coupling of the two turbine components leads to a geometrically complicated, multiply-connected flow domain. Nevertheless, this coupling accounts for the mutual effects of both elements on the three-dimensional flow pattern throughout the entire system. Compressibility effects are treated for an accurate prediction of the nozzle performance. Different geometrical configurations of both the scroll passage and the nozzle region are investigated for optimum performance. The results corresponding to a sample scroll-nozzle configuration are verified by experimental measurements.


1985 ◽  
Author(s):  
T. BARBER ◽  
G. MULLER ◽  
S. RAMSAY ◽  
E. MURMAN

2006 ◽  
Vol 128 (4) ◽  
pp. 432-444 ◽  
Author(s):  
Chanin Tongchitpakdee ◽  
Sarun Benjanirat ◽  
Lakshmi N. Sankar

The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7m∕s) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ⩽0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15m∕s) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.


1993 ◽  
Vol 115 (3) ◽  
pp. 602-613 ◽  
Author(s):  
Y. L. Yang ◽  
C. S. Tan ◽  
W. R. Hawthorne

A computational method based on a theory for turbomachinery blading design in three-dimensional inviscid flow is applied to a parametric design study of a radial inflow turbine wheel. As the method requires the specification of swirl distribution, a technique for its smooth generation within the blade region is proposed. Excellent agreements have been obtained between the computed results from this design method and those from direct Euler computations, demonstrating the correspondence and consistency between the two. The computed results indicate the sensitivity of the pressure distribution to a lean in the stacking axis and a minor alteration in the hub/shroud profiles. Analysis based on a Navier–Stokes solver shows no breakdown of flow within the designed blade passage and agreement with that from a design calculation; thus the flow in the designed turbine rotor closely approximates that of an inviscid one. These calculations illustrate the use of a design method coupled to an analysis tool for establishing guidelines and criteria for designing turbomachinery blading.


Author(s):  
J. H. G. Howard ◽  
Colin Osborne ◽  
David Japikse

A crucial aspect of the design process for centrifugal impellers is the establishment of specific blade shapes. A rapid inviscid flow analysis procedure was developed for incorporation within a geometry manipulation code. Using a single streamtube model, a single-pass computation technique was generated. A two-zone model ensures that key features of the passage flow physics are incorporated. Several examples of industrial design problems are employed to demonstrate the capabilities of the rapid loading method and its use in a geometry design procedure (used by some 20 industrial design groups worldwide). Comparisons with a quasi-three-dimensional method are included. The rapid loading method is most accurate when the meridional stream paths have similar shapes to those for the hub and shroud contours. The technique is useful within a geometry generation program since rapid aerodynamic screening of candidate configurations is allowed with sufficient accuracy to avoid the need for quasi-three-dimensional approaches. If required, the final design may be analyzed using three-dimensional viscous flow calculation methods.


1984 ◽  
Vol 106 (2) ◽  
pp. 414-420 ◽  
Author(s):  
J.-J. Camus ◽  
J. D. Denton ◽  
J. V. Soulis ◽  
C. T. J. Scrivener

Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7–1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major three-dimensional effects on the flow correctly.


2015 ◽  
Vol 774 ◽  
pp. 460-487 ◽  
Author(s):  
Valentina Motta ◽  
Alberto Guardone ◽  
Giuseppe Quaranta

The influence of the airfoil thickness on aerodynamic loads is investigated numerically for harmonically pitching airfoils at low incidence, under the incompressible and inviscid flow approximation. Force coefficients obtained from finite-volume unsteady simulations of symmetrical 4-digit NACA airfoils are found to depart from the linear Theodorsen model of an oscillating flat plate. In particular, the value of the reduced frequency resulting in the inversion – from clockwise to counter-clockwise – of the lift/angle-of-attack hysteresis curve is found to increase with the airfoil thickness. Both the magnitude and direction of the velocity vector due to pitching over the airfoil surface differ from their flat-plate values. During the upstroke, namely nose-up rotation, phase, this results in a decrease (increase) of the normal velocity magnitude over the upper (lower) surface of the airfoil. The opposite occurs during the downstroke phase. This is confirmed by comparing the computed pressure distribution to the flat-plate linear Küssner model. Therefore, beyond the inversion frequency, the lift coefficient of a finite-thickness airfoil is higher during upstroke and lower during downstroke than its flat-plate counterpart. A similar dependence is also found for the quarter-chord moment coefficient. Accordingly, a modification to the classical Theodorsen model is proposed to take into account the effects of the airfoil thickness on unsteady loads. The new model is found to accurately predict the unsteady aerodynamics of a thick symmetric and a slightly cambered airfoil with a maximum thickness in the range 4–24 %. The limits of the present inviscid flow analysis are assessed by means of numerical simulation of high Reynolds number ($\mathit{Re}=10^{6}$) flows.


1991 ◽  
Vol 113 (3) ◽  
pp. 141-146 ◽  
Author(s):  
L. M. C. Gato ◽  
L. R. C. Ec¸a ◽  
A. F. de O. Falca˜o

The Wells turbine is an axial-flow air-turbine designed to extract energy from the ocean waves. The turbine is self-rectifying, i.e., produces an unidirectional time-averaged torque from a reciprocating flow. The paper describes an experimental investigation on the aerodynamic performance of a modified version of the Wells turbine, whose rotor blades can be set at varying angle (as in a Kaplan turbine) while the turbine is in motion. The purpose of the work is to investigate whether, and to what extent, the modification to the turbine can enable it to achieve phase control—a method of tuning the energy-absorbing device to the incident waves—and avoid aerodynamic stall on the turbine rotor blades at peaks of air flow rate under conditions of real irregular ocean waves. Experimental results obtained with a model turbine are compared with predicted values from a quasi-three-dimensional computational method of flow analysis.


Sign in / Sign up

Export Citation Format

Share Document