The Surface-Tension-Driven Flow of Blood From a Droplet Into a Capillary Tube

2001 ◽  
Vol 123 (5) ◽  
pp. 446-454 ◽  
Author(s):  
Wei Huang ◽  
Raghbir S. Bhullar ◽  
Yuan Cheng Fung

In tissue, medical, or dental engineering, when blood comes into contact with a new artificial material, the flow may be influenced by surface tension between the blood and the surface of the material. The effect of surface tension on the flow of blood is significant, especially in microscale. The leading edge of the flowing blood is the triple point where the blood, the material surface, and a stationary gas or fluid meet. The movement of the triple point, i.e., the advancing front of the flow, is driven by surface tension, resisted by viscous shear stress, and balanced by the inertial force (−mass×acceleration). In this article, the dynamics is illustrated in detail in the case of blood flowing into a capillary tube by contact. The capillary tube draws the blood into it. It is shown theoretically that initially the flow of blood in the capillary has a large acceleration, followed by a relatively large deceleration over the next short period of time, then the acceleration becomes small and oscillatory. The velocity history appears impulsive at first, then slows down. The history of the length of blood column appears smooth after integration. Existing solutions of the Navier–Stokes equation permit the analysis of simpler cases. Further fluid mechanics development is needed to meet the practical needs of bioengineering. The importance of experimental study of surface tension and contact angle over a biological surface or a man-made material as a future direction of research is pointed out.

2019 ◽  
Vol 872 ◽  
pp. 100-114 ◽  
Author(s):  
Seungho Kim ◽  
Joonoh Kim ◽  
Ho-Young Kim

Liquid films on wettable solid surfaces can be disturbed to dewet when low surface tension liquids or surfactants are added because the surface tension difference gives rise to stresses on the film interface. Here we consider an alcohol drop placed above a thin aqueous film, which punctures a hole in the film starting from underneath the alcohol drop. Such film dewetting is attributed to the Marangoni effects caused by the spatial gradient of alcohol vapour concentration. We measure the liquid–gas interfacial tension of aqueous liquids rapidly responding to the surrounding isopropyl alcohol vapour concentration, and observe evolution of the film morphology consisting of central hole, fringe film, thinning region and bulk. We construct scaling laws to predict the dewetting rates of the film by considering the Marangoni stress, viscous shear stress and evaporation. It is shown that our experiments are consistent with our theory.


2007 ◽  
Vol 573 ◽  
pp. 191-209 ◽  
Author(s):  
FATHOLLAH VARNIK ◽  
DOROTHÉE DORNER ◽  
DIERK RAABE

Effects of wall roughness/topography on flows in strongly confined (micro-)channels are studied by means of lattice Boltzmann simulations. Whereas wall roughness in macroscopic channels is considered to be relevant only for high-Reynolds-number turbulent flows (where the flow is turbulent even for smooth walls), it is shown in this paper that, in micro-channels, surface roughness may even modify qualitative features of the flow. In particular, a transition from laminar to unsteady flow is observed. It is found that this roughness-induced transition is strongly enhanced as the channel width is decreased. The reliability of our results is checked by computing the viscous shear stress and the Reynolds stress across the channel, their sum following the theoretical prediction for the stress balance perfectly. Furthermore, the solutions obtained obey the transformation rules of the Navier–Stokes equation: When expressed in reduced (dimensionless) units, results for various channel dimensions, forcing term or dynamic viscosity are identical provided that the channel shape and the Reynolds number are unchanged. The time evolution of the velocity fluctuations at the initial stages of the transition to flow instability is monitored. It is found that fluctuations first occur in the vicinity of the rough wall, supporting the interpretation of wall roughness as a source of fluctuations and thus flow instability. In addition to their physical significance, our results provide further evidence for the reliability of the lattice Boltzmann method in dealing with complex unsteady flows.


Author(s):  
N. -T. Thy Linh ◽  
L. Ducloué ◽  
G. Ovarlez ◽  
X. Chateau

Author(s):  
K. Vijaykumar ◽  
S. Poonkodi ◽  
A.T. Sriram

Sunroof has become one of the essential features of a luxury car, and it provides natural air circulation and good illumination into the car. But the primary problem associated with it is the buffeting noise which causes discomfort to the passengers. Though adequate studies were carried out on sunroof buffeting, efficient control techniques are needed to be developed from fundamental mechanism. To reduce the buffeting noise, flow modifications at the entrance of the sunroof is considered in this study. The internal portion of the car with sunroof is simplified into a shear driven open cavity, and two-dimensional numerical simulations are carried out using commercial solver, ANSYS Fluent. Reynolds averaged Navier-Stokes equation is used with the realizable k-? turbulence model. The unsteady numerical result obtained in this study is validated with the available experimental results for the dominant frequency. The prediction is good agreement with experiment. Flow modification technique is proposed to control the sunroof buffeting by implementing geometric modifications. A hump has been placed near the leading edge of the cavity which resulted in significant reduction of pressure oscillations. Parametric studies have been performed by varying the height of hump and the distance of hump from the leading edge. There is no prominent difference when the height of the hump is varied. As the distance of the hump from the leading edge is reduced, the sound pressure level decreases.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Wang ◽  
Ruifeng Hu ◽  
Xiaojing Zheng

Leading edge erosion is a considerable threat to wind turbine performance and blade maintenance, and it is very imperative to accurately predict the influence of various degrees of erosion on wind turbine performance. In the present study, an attempt to investigate the effects of leading edge erosion on the aerodynamics of wind turbine airfoil is undertaken by using computational fluid dynamics (CFD) method. A new pitting erosion model is proposed and semicircle cavities were used to represent the erosion pits in the simulation. Two-dimensional incompressible Reynolds-averaged Navier–Stokes equation and shear stress transport (SST) k–ω turbulence model are adopted to compute the aerodynamics of a S809 airfoil with leading edge pitting erosions, where the influences of pits depth, densities, distribution area, and locations are considered. The results indicate that pitting erosion has remarkably undesirable influences on the aerodynamic performance of the airfoil, and the critical pits depth, density, and distribution area degrade the airfoil aerodynamic performance mostly were obtained. In addition, the dominant parameters are determined by the correlation coefficient path analysis method, results showed that all parameters have non-negligible effects on the aerodynamics of S809 airfoil, and the Reynolds number is of the most important, followed by pits density, pits depth, and pits distribution area. Meanwhile, the direct and indirect effects of these factors are analyzed, and it is found that the indirect effects are very small and the parameters can be considered to be independent with each other.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245245
Author(s):  
Yun-Feng Liu ◽  
Ke Gu ◽  
Yi-Ming Shu ◽  
Xian-Lei Zhang ◽  
Xin-Xin Liu ◽  
...  

As a type of flexible impermeable material, a PVC geomembrane must be cooperatively used with cushion materials. The contact interface between a PVC geomembrane and cushion easily loses stability. In this present paper, we analyzed the shear models and parameters of the interface to study the stability. Two different cushion materials were used: the common extrusion sidewall and non-fines concrete. To simulate real working conditions, flexible silicone cushions were added under the loading plates to simulate hydraulic pressure loading, and the loading effect of flexible silicone cushions was demonstrated by measuring the actual contact areas under different normal pressures between the geomembrane and cushion using the thin-film pressure sensor. According to elastomer shear stress, there are two main types of shear stress between the PVC geomembrane and the cushion: viscous shear stress and hysteresis shear stress. The viscous shear stress between the geomembrane and the cement grout was measured using a dry, smooth concrete sample, then the precise formula parameters of the viscous shear stress and viscous friction coefficient were obtained. The hysteresis shear stress between the geomembrane and the cushion was calculated by subtracting the viscous shear stress from the total shear stress. The formula parameters of the hysteresis shear stress and hysteresis friction coefficient were calculated. The three-dimensional box-counting dimensions of the cushion surface were calculated, and the formula parameters of the hysteresis friction were positively correlated with the three-dimensional box dimensions.


2014 ◽  
Vol 11 (97) ◽  
pp. 20140325 ◽  
Author(s):  
Stuart T. Johnston ◽  
Matthew J. Simpson ◽  
D. L. Sean McElwain

Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity D , and the cell proliferation rate λ . Scratch assays are a commonly reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched, and the motion of the front is monitored over a short period of time, often less than 24 h. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Use of leading edge data is very convenient because, unlike other methods, it is non-destructive and does not require labelling, tracking or counting individual cells among the population. In this work, we study short-time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allow us to reliably identify D and λ . Using a naive calibration approach where we simply scan the relevant region of the ( D , λ ) parameter space, we show that there are many choices of D and λ for which our model produces indistinguishable short-time leading edge data. Therefore, without due care, it is impossible to estimate D and λ from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information, we divide the duration of the experiment into two periods, and we estimate D using data from the first period, whereas we estimate λ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of D and λ that are consistent with previously reported values except that that our approach is fast, inexpensive, non-destructive and avoids the need for cell labelling and cell counting.


Author(s):  
Santhosh Kumar Gugulothu ◽  
B. Bhaskar ◽  
V.V. Phani Babu

Numerical simulations are carried out to study the effect of divergence angle and adverse pressure gradient on the movement of shock wave train in a scramjet isolator. The commercial software tool ANSYS Fluent 16 was used to simplify two dimensional Reynolds averaged Navier Stokes equation with compressible fluid flow by considering the density-based solver with standard K-ε turbulence model. The species transport model with single step volumetric reaction mechanism is employed. Initially, the simulated results are validated with experimental results available in open literature. The obtained results show that the variation of the divergence angle and back pressure on the scramjet isolator has greater significance on the flow field. Also, with an increase in the back pressure, due to the intense turbulent combustion, the shock wave train developed should expand along the length and also moves towards the leading edge of the isolator leading to rapid rise in the pressure so that the pressure at the entrance of the isolator can match the enhanced back pressures.


Sign in / Sign up

Export Citation Format

Share Document