Dewetting of liquid film via vapour-mediated Marangoni effect

2019 ◽  
Vol 872 ◽  
pp. 100-114 ◽  
Author(s):  
Seungho Kim ◽  
Joonoh Kim ◽  
Ho-Young Kim

Liquid films on wettable solid surfaces can be disturbed to dewet when low surface tension liquids or surfactants are added because the surface tension difference gives rise to stresses on the film interface. Here we consider an alcohol drop placed above a thin aqueous film, which punctures a hole in the film starting from underneath the alcohol drop. Such film dewetting is attributed to the Marangoni effects caused by the spatial gradient of alcohol vapour concentration. We measure the liquid–gas interfacial tension of aqueous liquids rapidly responding to the surrounding isopropyl alcohol vapour concentration, and observe evolution of the film morphology consisting of central hole, fringe film, thinning region and bulk. We construct scaling laws to predict the dewetting rates of the film by considering the Marangoni stress, viscous shear stress and evaporation. It is shown that our experiments are consistent with our theory.

2001 ◽  
Vol 123 (5) ◽  
pp. 446-454 ◽  
Author(s):  
Wei Huang ◽  
Raghbir S. Bhullar ◽  
Yuan Cheng Fung

In tissue, medical, or dental engineering, when blood comes into contact with a new artificial material, the flow may be influenced by surface tension between the blood and the surface of the material. The effect of surface tension on the flow of blood is significant, especially in microscale. The leading edge of the flowing blood is the triple point where the blood, the material surface, and a stationary gas or fluid meet. The movement of the triple point, i.e., the advancing front of the flow, is driven by surface tension, resisted by viscous shear stress, and balanced by the inertial force (−mass×acceleration). In this article, the dynamics is illustrated in detail in the case of blood flowing into a capillary tube by contact. The capillary tube draws the blood into it. It is shown theoretically that initially the flow of blood in the capillary has a large acceleration, followed by a relatively large deceleration over the next short period of time, then the acceleration becomes small and oscillatory. The velocity history appears impulsive at first, then slows down. The history of the length of blood column appears smooth after integration. Existing solutions of the Navier–Stokes equation permit the analysis of simpler cases. Further fluid mechanics development is needed to meet the practical needs of bioengineering. The importance of experimental study of surface tension and contact angle over a biological surface or a man-made material as a future direction of research is pointed out.


1996 ◽  
Vol 118 (1) ◽  
pp. 103-109 ◽  
Author(s):  
W. R. McGillis ◽  
V. P. Carey

The Marangoni effect on the critical heat flux (CHF) condition in pool boiling of binary mixtures has been identified and its effect has been quantitatively estimated with a modified model derived from hydrodynamics. The physical process of CHF in binary mixtures, and models used to describe it, are examined in the light of recent experimental evidence, accurate mixture properties, and phase equilibrium revealing a correlation to surface tension gradients and volatility. A correlation is developed from a heuristic model including the additional liquid restoring force caused by surface tension gradients. The CHF condition was determined experimentally for saturated methanol/water, 2-propanol/water, and ethylene glycol/water mixtures, over the full range of concentrations, and compared to the model. The evidence in this study demonstrates that in a mixture with large differences in surface tension, there is an additional hydrodynamic restoring force affecting the CHF condition.


Author(s):  
Francisco J. Arias ◽  
Salvador A. De Las Heras

Abstract In this work, consideration is given to capillary convection on ferrofluids from the concentration gradient induced when a nonhomogeneous magnetic field is applied. It is known that mass transfer along an interface between two fluids can appear due to a gradient of the surface tension in the so-called Marangoni effect (or Gibbs–Marangoni effect). Because the surface tension is both thermal and concentration dependent, Marangoni convection can be induced by either a thermal or a concentration gradient, where in the former case, it is generally referred as thermocapillary convection. Now, it has been theoretically and experimentally demonstrated that a ferrofluid under the action of a non-homogeneous magnetic field can induce a concentration gradient of suspended magnetic nanoparticles, and also the effect of Fe3O4 nanoparticles on the surface tension has been measured. Therefore, by deductive reasoning and taking into account the above mentioned facts, it is permissible to infer ferrohydrodynamic capillary convection on magnetic fluids under the presence of a magnetic gradient field. Utilizing a simplified physical model, the phenomenon was investigated and it was found that ferrohydrodynamic-Marangoni convection could be induced with particle size in the range up to 10 nm, which is the range of magnetic fluids to escape magnetic agglomeration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245245
Author(s):  
Yun-Feng Liu ◽  
Ke Gu ◽  
Yi-Ming Shu ◽  
Xian-Lei Zhang ◽  
Xin-Xin Liu ◽  
...  

As a type of flexible impermeable material, a PVC geomembrane must be cooperatively used with cushion materials. The contact interface between a PVC geomembrane and cushion easily loses stability. In this present paper, we analyzed the shear models and parameters of the interface to study the stability. Two different cushion materials were used: the common extrusion sidewall and non-fines concrete. To simulate real working conditions, flexible silicone cushions were added under the loading plates to simulate hydraulic pressure loading, and the loading effect of flexible silicone cushions was demonstrated by measuring the actual contact areas under different normal pressures between the geomembrane and cushion using the thin-film pressure sensor. According to elastomer shear stress, there are two main types of shear stress between the PVC geomembrane and the cushion: viscous shear stress and hysteresis shear stress. The viscous shear stress between the geomembrane and the cement grout was measured using a dry, smooth concrete sample, then the precise formula parameters of the viscous shear stress and viscous friction coefficient were obtained. The hysteresis shear stress between the geomembrane and the cushion was calculated by subtracting the viscous shear stress from the total shear stress. The formula parameters of the hysteresis shear stress and hysteresis friction coefficient were calculated. The three-dimensional box-counting dimensions of the cushion surface were calculated, and the formula parameters of the hysteresis friction were positively correlated with the three-dimensional box dimensions.


2018 ◽  
Vol 843 ◽  
pp. 575-600 ◽  
Author(s):  
Jean-Philippe Matas ◽  
Antoine Delon ◽  
Alain Cartellier

We study the destabilization of a round liquid jet by a fast annular gas stream. We measure the frequency of the shear instability waves for several geometries and air/water velocities. We then carry out a linear stability analysis, and show that there are three competing mechanisms for the destabilization: a convective instability, an absolute instability driven by surface tension and an absolute instability driven by confinement. We compare the predictions of this analysis with experimental results, and propose scaling laws for wave frequency in each regime. We finally introduce criteria to predict the boundaries between these three regimes.


2008 ◽  
Vol 47 (11) ◽  
pp. 1454-1463 ◽  
Author(s):  
Feng Zhang ◽  
Xian-Guang Zhao ◽  
You-Ting Wu ◽  
Zhi-Xiang Wang ◽  
Zhi-Bing Zhang

2017 ◽  
Vol 822 ◽  
pp. 202-234 ◽  
Author(s):  
S. Noroozi ◽  
H. Alamdari ◽  
W. Arne ◽  
R. G. Larson ◽  
S. M. Taghavi

We develop a general regularized thin-fibre (string) model to predict the properties of non-Newtonian fluid fibres generated by centrifugal spinning. In this process the fibre emerges from a nozzle of a spinneret that rotates rapidly around its axis of symmetry, in the presence of centrifugal, Coriolis, inertial, viscous/shear-thinning, surface tension and gravitational forces. We analyse the effects of five important dimensionless groups, namely, the Rossby number ($Rb$), the Reynolds number ($Re$), the Weber number ($We$), the Froude number ($Fr$) and a power-law index ($m$), on the steady state trajectory and thinning of fibre radius. In particular, we find that the gravitational force mainly affects the fibre vertical angle at small arc lengths as well as the fibre trajectory. We show that for small $Rb$, which is the regime of nanofibre formation in centrifugal spinning methods, rapid thinning of the fibre radius occurs over small arc lengths, which becomes more pronounced as $Re$ increases or $m$ decreases. At larger arc lengths, a relatively large $We$ results in a spiral trajectory regime, where the fibre eventually recovers a corresponding inviscid limit with a slow thinning of the fibre radius as a function of the arc length. Viscous forces do not prevent the fibre from approaching the inviscid limit, but very strong surface tension forces may do so as they could even result in a circular trajectory with an almost constant fibre radius. We divide the spiral and circular trajectories into zones of no thinning, intense thinning and slow or ceased thinning, and for each zone we provide simple expressions for the fibre radius as a function of the arc length.


Sign in / Sign up

Export Citation Format

Share Document