Nonlinear Stability of Circular Cylindrical Shells in Annular and Unbounded Axial Flow

2001 ◽  
Vol 68 (6) ◽  
pp. 827-834 ◽  
Author(s):  
M. Amabili ◽  
F. Pellicano ◽  
M. A. Pai¨doussis

The stability of circular cylindrical shells with supported ends in compressible, inviscid axial flow is investigated. Nonlinearities due to finite-amplitude shell motion are considered by using Donnell’s nonlinear shallow-shell theory; the effect of viscous structural damping is taken into account. Two different in-plane constraints are applied at the shell edges: zero axial force and zero axial displacement; the other boundary conditions are those for simply supported shells. Linear potential flow theory is applied to describe the fluid-structure interaction. Both annular and unbounded external flow are considered by using two different sets of boundary conditions for the flow beyond the shell length: (i) a flexible wall of infinite extent in the longitudinal direction, and (ii) rigid extensions of the shell (baffles). The system is discretized by the Galerkin method and is investigated by using a model involving seven degrees-of-freedom, allowing for traveling-wave response of the shell and shell axisymmetric contraction. Results for both annular and unbounded external flow show that the system loses stability by divergence through strongly subcritical bifurcations. Jumps to bifurcated states can occur well before the onset of instability predicted by linear theory, showing that a linear study of shell stability is not sufficient for engineering applications.

2000 ◽  
Author(s):  
M. Amabili ◽  
M. P. Païdoussis ◽  
F. Pellicano

Abstract The stability of supported, circular cylindrical shells in compressible, inviscid axial flow is investigated. Nonlinearities due to large amplitude shell motion are considered by using the nonlinear Donnell shallow shell theory and the effect of viscous structural damping is taken into account. Two different in-plane constraints are applied to the shell edges: zero axial force and zero axial displacement; the other boundary conditions are those for simply supported shells. Linear potential flow theory is applied to describe the fluid-structure interaction. Both annular and unbounded external flow are considered by using two different sets of boundary conditions for the flow beyond the shell length: (i) a flexible wall of infinite extent in the longitudinal direction, and (ii) rigid extensions of the shell (baffles). The system is discretised by Galerkin projections and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Results for both annular and unbounded external flow show that the system loses stability by divergence through strongly subcritical bifurcations. Jumps to bifurcated positions can happen much before the onset of instability predicted by linear theories, showing the necessity of a nonlinear study.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


2001 ◽  
Vol 69 (2) ◽  
pp. 117-129 ◽  
Author(s):  
M. Amabili ◽  
F. Pellicano

The aeroelastic stability of simply supported, circular cylindrical shells in supersonic flow is investigated by using both linear aerodynamics (first-order piston theory) and nonlinear aerodynamics (third-order piston theory). Geometric nonlinearities, due to finite amplitude shell deformations, are considered by using the Donnell’s nonlinear shallow-shell theory, and the effect of viscous structural damping is taken into account. The system is discretized by Galerkin method and is investigated by using a model involving up to 22 degrees-of-freedom, allowing for travelling-wave flutter around the shell and axisymmetric contraction of the shell. Asymmetric and axisymmetric geometric imperfections of circular cylindrical shells are taken into account. Numerical calculations are carried out for a very thin circular shell at fixed Mach number 3 tested at the NASA Ames Research Center. Results show that the system loses stability by travelling-wave flutter around the shell through supercritical bifurcation. Nonsimple harmonic motion is observed for sufficiently high post-critical dynamic pressure. A very good agreement between theoretical and existing experimental data has been found for the onset of flutter, flutter amplitude, and frequency. Results show that onset of flutter is very sensible to small initial imperfections of the shells. The influence of pressure differential across the shell skin has also been deeply investigated. The present study gives, for the first time, results in agreement with experimental data obtained at the NASA Ames Research Center more than three decades ago.


1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


2000 ◽  
Author(s):  
F. Pellicano ◽  
M. Amabili ◽  
M. P. Païdoussis

Abstract The response of a shell conveying fluid to harmonic excitation, in the spectral neighbourhood of one of the lowest natural frequencies, is investigated for different flow velocities. Nonlinearities due to moderately large amplitude shell motion are considered by using the nonlinear Donnell shallow shell theory. Linear potential flow theory is applied to describe the fluid-structure interaction by using the model proposed by Païdoussis and Denise. For different amplitude and frequency of the excitation and for different flow velocities, the following are investigated numerically: (i) periodic response of the system; (ii) unsteady and stochastic motion; (iii) loss of stability by jumps to bifurcated branches. The effect of the flow velocity on the nonlinear periodic response of the system has also been investigated. Poincaré maps and bifurcation diagrams are used to study the unsteady and stochastic dynamics of the system. Amplitude-modulated motions, multi-periodic solutions, chaotic responses and the so-called “blue sky catastrophe” phenomenon have been observed for different values of the system parameters; the latter two have been predicted here probably for the first time for the dynamics of circular cylindrical shells.


2001 ◽  
Author(s):  
Francesco Pellicano ◽  
Marco Amabili ◽  
Michael P. Païdoussis

Abstract The nonlinear vibrations of simply supported, circular cylindrical shells, having geometric nonlinearities is analyzed. Donnell’s nonlinear shallow-shell theory is used, and the partial differential equations are spatially discretized by means of the Galerkin procedure, using a large number of degrees of freedom. A symbolic manipulation code is developed for the discretization, allowing an unlimited number of modes. In the displacement expansion particular care is given to the comparison functions in order to reduce as much as possible the dimension of the dynamical system, without losing accuracy. Both driven and companion modes are included, allowing for traveling-wave response of the shell. The fundamental role of the axisymmetric modes, which are included in the expansion, is confirmed and a convergence analysis is performed. The effect of the geometric shell characteristics, radius, length and thickness, on the nonlinear behavior is analyzed.


2019 ◽  
Vol 25 (18) ◽  
pp. 2494-2508 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Meskini

In this research, investigations are presented of the free vibration of porous laminated rotating circular cylindrical shells based on Love’s shell theory with simply supported boundary conditions. The equilibrium equations for circular cylindrical shells are obtained using Hamilton’s principle. Also, Navier’s solution is used to solve the equations of the cylindrical shell due to the simply supported boundary conditions. The results are compared with previous results of other researchers. The numerical result of this study indicates that with increase of the porosity coefficient the nondimensional backward and forward frequency decreased. Then the results of the free vibration of rotating cylindrical shells are presented in terms of the effects of porous coefficients, porous type, length to radius ratio, rotating speed, and axial and circumferential wave numbers.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Dong Tang ◽  
Guoxun Wu ◽  
Xiongliang Yao ◽  
Chuanlong Wang

An analytical procedure for free vibration analysis of circular cylindrical shells with arbitrary boundary conditions is developed with the employment of the method of reverberation-ray matrix. Based on the Flügge thin shell theory, the equations of motion are solved and exact solutions of the traveling wave form along the axial direction and the standing wave form along the circumferential direction are obtained. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive a unified and compact form of equation for natural frequencies of circular cylindrical shells with arbitrary boundary conditions. The exact frequency parameters obtained in this paper are validated by comparing with those given by other researchers. The effects of the elastic restraints on the frequency parameters are examined in detail and some novel and useful conclusions are achieved.


Author(s):  
Francesco Pellicano

In the present paper the dynamic stability of circular cylindrical shells is investigated; the combined effect of compressive static and periodic axial loads is considered. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration; Lagrange equations are used to reduce the nonlinear partial differential equations to a set of ordinary differential equations. The dynamic stability is investigated using direct numerical simulation and a dichotomic algorithm to find the instability boundaries as the excitation frequency is varied; the effect of geometric imperfections is investigated in detail. The accuracy of the approach is checked by means of comparisons with the literature.


1961 ◽  
Vol 28 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Paul Seide ◽  
V. I. Weingarten

The stability of circular cylindrical shells under pure bending is investigated by means of Batdorf’s modified Donnell’s equation and the Galerkin method. The results of this investigation have shown that, contrary to the commonly accepted value, the maximum critical bending stress is for all practical purposes equal to the critical compressive stress.


Sign in / Sign up

Export Citation Format

Share Document