Experimental Robot Identification: Advantages of Combining Internal and External Measurements and of Using Periodic Excitation
This paper discusses the advantages of using periodic excitation and of combining internal and external measurements in experimental robot identification. This discussion is based on the robot identification method developed by Swevers et al., a method that is recognized by industry as an effective means of robot identification that is frequently used, Hirzinger, G., Fischer, M., Brunner, B., Koeppe, R., Otter, M., Grebenstein, M., and Schafer, I, 1999, “Advances is Robotics: The DLR Experiment,” The International Journal of Robotics Research, Vol. 18, No. 11, pp. 1064–1087 [3]. Experimental results on a KUKA IR 361 show that the periodicity of the robot excitation is a key element of this method. Nonperiodic robot excitation complicates the signal processing preceding the parameter estimation, often yielding less accurate parameter estimates. An extension of this identification method combines internal and external measurements, Chenut, X., Samin, J. C., Swevers, J., and Ganseman, C., 2000, “Combining Internal and External robot Models for improved Model Parameter Estimation,” Mechanical Systems and Signal Processing. Vol. 14, No. 5, pp. 691–704 [4], yielding robot models that allow to accurately predict the actuator torques and the reaction forces/torques of the robot on its base plate, which are both important for the path planning. This paper presents and critically discusses the first experimental results obtained with this method.