Modeling of Combustion in Gasoline Direct Injection Engines for the Optimization of Engine Management System Through Reduction of Three-Dimensional Models to (n × One-Dimensional) Models

2003 ◽  
Vol 125 (3) ◽  
pp. 520-532 ◽  
Author(s):  
P. Emery ◽  
F. Maroteaux ◽  
M. Sorine

Gasoline direct injection (GDI) spark ignition engines may be able to run over a wide range of operating conditions. The GDI process allows combustion with lean mixtures which may lead to improved fuel economy and emissions relative to homogeneous spark ignition (SI) engines. To satisfy the different modes of operation, the tuning of GDI engines requires a large number of engine tests which are time-consuming and very expensive. To reduce the number of tests, a model with a very short computational time to simulate the engines in the whole operating range is needed; therefore the objective of this paper is to present a reduced model to analyze the combustion process in GDI engines, applied to a homogeneous stoichiometric mode. The objective of the model is to reproduce the same tendencies as those obtained by three-dimensional models, but with a reduced computational time. The one-dimensional model is obtained thanks to a reduction methodology based on the geometry of the combustion front computed with three-dimensional models of the KIVA-GSM code, a modified version of KIVA-II code including a CFM combustion model. The model is a set of n one-dimensional equations (i.e., for n rays), taking into account a thin flame front, described with the flamelet assumption. It includes a CFM combustion model and a (k,ε)-model including the mean air motions (swirl and tumble). The results of the one-dimensional model are compared to those obtained by the KIVA IIGSM under different engine conditions. The comparison shows that the one-dimensional model overestimates the maximum cylinder pressure, which has an insignificant effect on the net indicated work per cycle. The results obtained by the numerical simulations are close to those given by the three-dimensional model, with a much reduced computation time.

1989 ◽  
Vol 111 (3) ◽  
pp. 204-210 ◽  
Author(s):  
Y. H. Zurigat ◽  
K. J. Maloney ◽  
A. J. Ghajar

A survey of the stratified thermal storage tank one-dimensional models available in the literature has been conducted. Six of these models were tested and compared against the experimental data obtained at our laboratories and from the literature. Although various factors affecting the performance of a stratified tank can be accounted for by the higher order models, i.e. two- and three-dimensional models, the introduction of empirically-based mixing parameters into the one-dimensional models renders them widely applicable and practical in the simulation of energy systems incorporating thermal storage tanks.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


2018 ◽  
Vol 33 ◽  
pp. 02033
Author(s):  
Vladimir Agapov

The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.


Author(s):  
D. Pulgarín ◽  
J. Plaza ◽  
J. Ruge ◽  
J. Rojas

This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


2020 ◽  
pp. 146808742095133 ◽  
Author(s):  
Konstantinos Bardis ◽  
Panagiotis Kyrtatos ◽  
Guoqing Xu ◽  
Christophe Barro ◽  
Yuri Martin Wright ◽  
...  

Lean-burn gas engines equipped with an un-scavenged prechamber have proven to reduce nitrogen oxides (NOx) emissions and fuel consumption, while mitigating combustion cycle-to-cycle fluctuations and unburned hydrocarbon (UHC) emissions. However, the performance of a prechamber gas engine is largely dependent on the prechamber design, which has to be optimised for the particular main chamber geometry and the foreseen engine operating conditions. Optimisation of such complex engine components relies partly on computationally efficient simulation tools, such as quasi and zero-dimensional models, since extensive experimental investigations can be costly and time-consuming. This article presents a newly developed quasi-dimensional (Q-D) combustion model for un-scavenged prechamber gas engines, which is motivated by the need for reliable low order models to optimise the principle design parameters of the prechamber. Our fundamental aim is to enhance the predictability and robustness of the proposed model with the inclusion of the following: (i) Formal derivation of the combustion and flow submodels via reduction of the corresponding three-dimensional models. (ii) Individual validation of the various submodels. (iii) Combined use of numerical simulations and experiments for the model validation. The resulting model shows very good agreement with the numerical simulations and the experiments from two different engines with various prechamber geometries using a set of fixed calibration parameters.


Author(s):  
Ali Y. Alharbi ◽  
Deborah V. Pence ◽  
Rebecca N. Cullion

Flow through fractal-like branching flow networks is investigated using a three-dimensional computational fluid dynamics approach. Results are used to assess the validity of, and provide insight for improving, assumptions imposed in a one-dimensional model previously developed. Assumptions in the one-dimensional model include (1) reinitiating boundary layers following each bifurcation, (2) negligible minor losses at the bifurcations, and (3) constant thermophysical fluid properties. It is concluded that the temperature dependence of fluid properties, boundary layer development, and minor losses following a bifurcation are not negligible in analyses of branching flow networks.


2020 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>Currently, one-dimensional and three-dimensional models are widely used to model thermohydrodynamic and biochemical processes in lakes and water rеreservoirs. One-dimensional models are highly computationally efficient and are used to parameterize land water bodies in climate models, however, when calculating large lakes and reservoirs with complex geometry, such models may incorrectly reproduce processes associated with horizontal heterogeneity. This becomes especially important for the prediction of water quality and euthrophication.</p><p>A three-dimensional model of thermohydrodynamics and biochemistry of an inland water obect is presented, which is based on the hydrostatic RANS model [1-3], and the parameterization of biochemical processes is implemented by analogy with the scheme for calculating biochemistry in the one-dimensional LAKE model [4]. Thus, the three-dimensional model is supplemented by a description of the transport of substances such as oxygen (O<sub>2</sub>), carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), as well as phyto- and zooplankton. The effect of turbulent diffusion and large-scale water movements on the distribution of a methane concentration field is studied.</p><p>To verify the calculation results, idealized numerical experiments and comparison with the measurement data on Lake Kuivajärvi (Finland) were used.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (18-05-00292, 18-35-00602, 20-05-00776). <br><br>References:<br>[1] Mortikov E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. 52. P. 108-115.<br>[2] Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. V. 34, N 2. P. 119-132.<br>[3] D.S. Gladskikh, V.M. Stepanenko, E.V. Mortikov, On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer. // Water Resourses. 2019. 18 pages. (submitted)<br>[4] Victor Stepanenko, Ivan Mammarella, Anne Ojala, Heli Miettinen, Vasily Lykosov, and Vesala Timo. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5): 1977–2006, 2016.</p>


Sign in / Sign up

Export Citation Format

Share Document