A One-Dimensional Viscous-Inviscid Strong Interaction Model for Flow in Indented Channels With Separation and Reattachment

2003 ◽  
Vol 125 (3) ◽  
pp. 355-362 ◽  
Author(s):  
S. G. C. Kalse ◽  
H. Bijl ◽  
B. W. van Oudheusden

A new one-dimensional model is presented for the calculation of steady and unsteady flow through an indented two-dimensional channel with separation and reattachment. It is based on an interactive boundary layer approach, where the equations for the boundary layer flow near the channel walls and for an inviscid core flow are solved simultaneously. This approach requires no semi-empirical inputs, such as the location of separation and reattachment, which is an advantage over other existing one-dimensional models. Because of the need of an inviscid core alongside the boundary layers, the type of inflow as well as the length of the channel and the value of the Reynolds number poses some limitations on the use of the new model. Results have been obtained for steady flow through the indented channel of Ikeda and Matsuzaki. In further perspective, it is discussed how the present model, in contrast to other one-dimensional flow models, can be extended to calculate the flow in nonsymmetrical channels, by considering different boundary layers on each of the walls.

2003 ◽  
Vol 125 (6) ◽  
pp. 1051-1057 ◽  
Author(s):  
Ali Y. Alharbi ◽  
Deborah V. Pence ◽  
Rebecca N. Cullion

Flow through fractal-like branching networks is investigated using a three-dimensional computational fluid dynamics approach. Results are used to assess the validity of, and provide insight for improving, assumptions imposed in a previously developed one-dimensional model. Assumptions in the one-dimensional model include (1) reinitiating boundary layers following each bifurcation, (2) constant thermophysical fluid properties, and (3) negligible minor losses at the bifurcations. No changes to the redevelopment of hydrodynamic boundary layers following a bifurcation are recommended. It is concluded that temperature varying fluid properties should be incorporated in the one-dimensional model to improve its predictive capabilities, especially at higher imposed heat fluxes. Finally, a local pressure recovery at each bifurcation results from an increase in flow area. Ultimately, this results in a lower total pressure drop and should be incorporated in the one-dimensional model.


New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


Author(s):  
Katsuhiro Kikuchi ◽  
Satoru Ozawa ◽  
Yuhei Noguchi ◽  
Shinya Mashimo ◽  
Takanobu Igawa

Predicting the aerodynamic phenomena in a train-tunnel system is important for increasing the speed of railway trains. Among these phenomena, many studies have focused on the effects of pressure; however, only a few studies have examined the effects of flow velocity. When designing train roof equipment such as a pantograph and an aerodynamic braking unit, it is necessary to estimate the flow velocity while considering the influence of the boundary layer developed on the train roof. Until now, numerical simulations using a one-dimensional model have been utilized to predict the flow velocity around a train traveling through a tunnel; however, the influence of the boundary layer cannot be taken into consideration in these simulations. For this purpose, the authors have previously proposed a simple calculation method based on a steady incompressible tunnel flow model that can take into account the influence of the boundary layer, but this method could not incorporate the unsteadiness of the flow velocity. Therefore, in this study, the authors extend the previous simple calculation method such that it can be used for an unsteady incompressible tunnel flow. The authors compare the calculation results obtained from the extended method with the results of a model experiment and a field test to confirm its effectiveness.


2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


1981 ◽  
Vol 103 (1) ◽  
pp. 104-111 ◽  
Author(s):  
J. P. F. Lindhout ◽  
G. Moek ◽  
E. De Boer ◽  
B. Van Den Berg

This paper gives a description of a calculation method for 3D turbulent and laminar boundary layers on nondevelopable surfaces. A simple eddy viscosity model is incorporated in the method. Special attention is given to the organization of the computations to circumvent as much as possible stepsize limitations. The method is also able to proceed the computation around separated flow regions. The method has been applied to the laminar boundary layer flow over a flat plate with attached cylinder, and to a turbulent boundary layer flow over an airplane wing.


Author(s):  
Stefan Becker ◽  
Donald M. McEligot ◽  
Edmond Walsh ◽  
Eckart Laurien

New results are deduced to assess the validity of proposed transition indicators when applied to situations other than boundary layers on smooth surfaces. The geometry employed utilizes a two-dimensional square rib to disrupt the boundary layer flow. The objective is to determine whether some available criteria are consistent with the present measurements of laminar recovery and transition for the flow downstream of this rib. For the present data — the proposed values of thresholds for transition in existing literature that are based on the freestream turbulence level at the leading edge are not reached in the recovering laminar run but they are not exceeded in the transitioning run either. Of the pointwise proposals examined, values of the suggested quantity were consistent for three of the criteria; that is, they were less than the threshold in laminar recovery and greater than it in the transitioning case.


Author(s):  
Ali Y. Alharbi ◽  
Deborah V. Pence ◽  
Rebecca N. Cullion

Heat transfer to liquid flow through fractal-like branching flow networks is investigated using a three-dimensional computational fluid dynamics approach. Results are used to assess the validity of, and provide insight for improving, assumptions imposed in a previously developed one-dimensional model to predict wall temperature distributions along a fractal-like flow network. Assumptions in the one-dimensional model include (1) reinitiating thermal and hydrodynamic boundary layers following each bifurcation, (2) negligible minor losses at the bifurcations, and (3) constant thermo-physical fluid properties. It is concluded that temperature varying fluid properties and minor losses should be incorporated in the one-dimensional model to improve its predictive capabilities. No changes to the redevelopment of the boundary layers at each wall following a bifurcation are recommended. Surface temperature distributions along heat sinks with parallel and fractal-like branching flow networks are also investigated and compared. For the same observed maximum surface temperature between the two heat sinks, considerably lower temperature variations and pressure drops, greater than 50 percent, are noted for the fractal-like heat sink.


1965 ◽  
Vol 69 (655) ◽  
pp. 497-498
Author(s):  
W. K. Allan ◽  
B. S. Stratford

Dr. Stratford (p. 133, February 1965 Journal) is to be supported in his endeavour to apply boundary layer theory to the prediction of optimum loading requirements in flow through blades in cascade. Inevitably some simplification of the general flow system in a blade passage is necessary if undue complexity is to be avoided. In the simplified flow model, however, care must be taken to avoid over-simplification, and the limitations imposed by legitimate approximations must be appreciated.


Sign in / Sign up

Export Citation Format

Share Document