Investigation of an Inversely Designed Centrifugal Compressor Stage—Part I: Design and Numerical Verification

2004 ◽  
Vol 126 (1) ◽  
pp. 73-81 ◽  
Author(s):  
M. Zangeneh ◽  
M. Schleer ◽  
F. Pløger ◽  
S. S. Hong ◽  
C. Roduner ◽  
...  

In this paper the three-dimensional inverse design code TURBOdesign-1 is applied to the design of the blade geometry of a centrifugal compressor impeller with splitter blades. In the design of conventional impellers the splitter blades normally have the same geometry as the full blades and are placed at mid-pitch location between the two full blades, which can usually result in a mismatch between the flow angle and blade angles at the splitter leading edge. In the inverse design method the splitter and full blade geometry is computed independently for a specified distribution of blade loading on the splitter and full blades. In this paper the basic design methodology is outlined and then the flow in the conventional and inverse designed impeller is compared in detail by using computational fluid dynamics (CFD) code TASCflow. The CFD results confirm that the inverse design impeller has a more uniform exit flow, better control of tip leakage flow and higher efficiency than the conventional impeller. The results also show that the shape of the trailing edge geometry has a very appreciable effect on the impeller Euler head and this must be accurately modeled in all CFD computations to ensure closer match between CFD and experimental results. Detailed measurements are presented in part II of the paper.

Author(s):  
M. Zangeneh ◽  
M. Schleer ◽  
F. Plo̸ger ◽  
S. S. Hong ◽  
C. Roduner ◽  
...  

In this paper the 3D inverse design code TURBOdesign-1 is applied to the design of the blade geometry of a centrifugal compressor impeller with splitter blades. In the design of conventional impellers the splitter blades normally have the same geometry as the full blades and are placed at mid-pitch location between the two full blades, which can usually result in a mis-match between the flow angle and blade angles at the splitter leading edge. In the inverse design method the splitter and full blade geometry is computed independently for a specified distribution of blade loading on the splitter and full blades. In this paper the basic design methodology is outlined and then the flow in the conventional and inverse designed impeller is compared in detail by using CFD code TASCflow. The CFD results confirm that the inverse design impeller has a more uniform exit flow, better control of tip leakage flow and higher efficiency than the conventional impeller. The results also show that the shape of the trailing edge geometry has a very appreciable effect on the impeller Euler head and this must be accurately modeled in all CFD computations to ensure closer match between CFD and experimental results. Detailed measurements are presented in part 2 of the paper.


Author(s):  
James H. Page ◽  
Paul Hield ◽  
Paul G. Tucker

Semi-inverse design is the automatic re-cambering of an aerofoil, during a computational fluid dynamics (CFD) calculation, in order to achieve a target lift distribution while maintaining thickness, hence “semi-inverse”. In this design method, the streamwise distribution of curvature is replaced by a stream-wise distribution of lift. The authors have developed an inverse design code based on the method of Hield (2008) which can rapidly design three-dimensional fan blades in a multi-stage environment. The algorithm uses an inner loop to design to radially varying target lift distributions, an outer loop to achieve radial distributions of stage pressure ratio and exit flow angle, and a choked nozzle to set design mass flow. The code is easily wrapped around any CFD solver. In this paper, we describe a novel algorithm for designing simultaneously for specified performance at full speed and peak efficiency at part speed, without trade-offs between the targets at each of the two operating points. We also introduce a novel adaptive target lift distribution which automatically develops discontinuous changes of calculated magnitude, based on the passage shock, eliminating erroneous lift demands in the shock vicinity and maintaining a smooth aerofoil.


1990 ◽  
Vol 112 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Zhao Xiaolu ◽  
Qin Lisen

An aerodynamic design method, which is based on the Mean Stream Surface Method (MSSM), has been developed for designing centrifugal compressor impeller blades. As a component of a CAD system for centrifugal compressor, it is convenient to use the presented method for generating impeller blade geometry, taking care of manufacturing as well as aerodynamic aspects. The design procedure starts with an S2m indirect solution. Afterward from the specified S2m surface, by the use of Taylor series expansion, the blade geometry is generated by straight-line elements to meet the manufacturing requirements. Simultaneously, the fluid dynamic quantities across the blade passage can be determined directly. In terms of these results, the designer can revise the distribution of angular momentum along the shroud and hub, which are associated with blade loading, to get satisfactory velocities along the blade surfaces in order to avoid or delay flow separation.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multiobjective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a three-dimensional (3D) inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry are changed during the optimization. In the first approach, design of experiment (DOE) method is used and the pump efficiency is obtained from computational fluid dynamics (CFD) simulations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with reduced cavitation at high flow. In the second approach, only the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the computationally more expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization, an equivalent optimization is carried out by parametrizing the blade angle and meridional shape.


Author(s):  
Yujie Zhu ◽  
Yaping Ju ◽  
Chuhua Zhang

Most of the inverse design methods of turbomachinery experience the shortcoming where the target aerodynamic parameters need to be manually specified depending on the designers’ experience and insight, making the design result aleatory and even deviated from the real optimal solution. To tackle this problem, an experience-independent inverse design optimization method is proposed and applied to the redesign of a compressor cascade airfoil in this study. The experience-independent inverse design optimization method can automatically obtain the target pressure distribution along the cascade airfoil through the genetic algorithm, rather than through the manual specification approach. The shape of cascade airfoil is then solved by the adjoint method. The effectiveness of the experience-independent inverse design optimization method is demonstrated by two inverse design cases of the compressor cascade airfoil, i.e. the inverse design of only the suction surface and the inverse design of both the suction and pressure surfaces. The results show that the proposed inverse design method is capable of significantly improving the aerodynamic performance of the compressor cascade. At the examined flow condition, a thin airfoil profile is beneficial to flow accelerations near the leading edge and flow separation avoidance near the trailing edge. The proposed inverse design method is quite generic and can be extended to the three-dimensional inverse design of advanced compressor blades.


Author(s):  
D. Wittrock ◽  
M. Junker ◽  
M. Beversdorff ◽  
A. Peters ◽  
E. Nicke

Abstract In the last decades major improvements in transonic centrifugal compressor design have been achieved. The further exploration of design space is enabled by recent progress in structural mechanics and manufacturing. A challenging task of inducer design especially in terms of transonic inflow conditions is to provide a wide flow range and reduced losses due to a sufficient shock control. The use of so called multidisciplinary design optimization with an extensive amount of free parameters leads finally to complex designs. DLR’s latest Fast Rotating Centrifugal Compressor (SRV5) operates at a design speed of Mu2 = 1.72 and a total pressure ratio of 5.72. This compressor design is characterized by an S-shaped leading edge and free-form blade surfaces. Due to the complex design the key design features are difficult to explore. Therefore, non-intrusive measurements are conducted on the highly loaded SRV5. The Laser-2-Focus (L2F) approach that is used in addition with the Doppler Global Velocimetry (DGV) delivers a three dimensional velocity field. Besides the impeller inflow the ouflow is also part of the experimental and numerical verification of the advanced compressor design. Experimental results are compared with the numerical analysis of the compressor using DLR’s RANS Flow Solver TRACE. The deep insight of the inflow leads to a better understanding of the operating behavior of such impeller designs.


1996 ◽  
Vol 118 (2) ◽  
pp. 385-393 ◽  
Author(s):  
M. Zangeneh

A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called “Secondary Flow Approximation” in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniform inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton’s three-dimensional inviscid Euler solver and Dawes’ three-dimensional Navier–Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.


2021 ◽  
Author(s):  
Mingyi Wang ◽  
Zhiheng Wang ◽  
Guang Xi ◽  
Yurun Li

Abstract The propagation characteristics of inlet total-pressure distortion in a centrifugal compressor are investigated by full-annulus unsteady three-dimensional numerical simulation. The inlet distortions considered in the paper are the total-pressure distortions covering a 60-deg sector (60deg distortion) and three 20-deg sectors (3*20deg distortion), respectively. One is the classical distortion form, and the other is to simulate the downstream flow of the axial section of a centrifugal-axial combined compressor. By analyzing the distributions of flow parameters, the propagation of the total-pressure distortion in the centrifugal compressor is interpreted. The results show that, with the distortion propagating to the downstream, the low-pressure region produces a phase deviation along the streamwise direction relative to the opposite direction of impeller rotation direction, and the range of distortion region is reduced. Additionally, the propagation of the inlet distortion makes the three-dimensional characteristics of airflow more complex. The flow angle increases with different amplitudes along the direction of blade height corresponding to the distorted sector. The distortion region affects the location of blades which are in a low-pressure area, and the intensity of the distortion affects the increase of the flow angle. The distortion region causes more local relative flow losses, especially near the leading edge of blade suction surface.


Author(s):  
M. Zangeneh ◽  
N. Amarel ◽  
K. Daneshkhah ◽  
H. Krain

In this work, the redesign of a centrifugal transonic compressor impeller with splitter blades by means of the three-dimensional inverse design code TURBOdesign-1 is presented. The basic design methodology for impellers with splitter blades is outlined and is applied in a systematic way to improve the aero/mechanical performance of a transonic 6.2:1 pressure ratio centrifugal compressor impeller. The primary design variables are the main and splitter blades loading and their thickness distributions, the splitter to main blade work ratio, as well as the span-wise swirl distribution. The flow in the original and redesigned impellers are then analyzed by means of a commercial CFD code (ANSYS CFX). The predicted flow field for the original impeller is compared with detailed L2F measurements inside and outside the impeller. The validated CFD results are used to compare the flow field in the optimized and original impeller. It is shown that the inverse design method could be effectively used to control the position and strength of the shock waves, eliminate flow separation and hence obtain a more uniform impeller exit flow in order to improve the aerodynamic performance. In addition, some results are presented on the comparison of stress and vibration in both impellers.


Author(s):  
Yang Zhao ◽  
Jiayi Zhao ◽  
Zhiheng Wang ◽  
Guang Xi

The diffuser rotating stall in a centrifugal compressor with vaned diffuser is one of important unsteady flow phenomena, which limits the operating range of the compressor. In this paper, the unsteady CFD analysis on a low-speed centrifugal compressor has been performed to investigate the flow characteristic in the diffuser and the propagation of the diffuser rotating stall. The flow behaviors at the outlet of the impeller at design and off-design conditions are firstly investigated. It is found that a reversal flow, induced by the tip leakage flow, exists near the shroud at the impeller outlet and becomes serious with the mass flow rate reduced. Due to the span-wise variation of the flow angle at the diffuser inlet and the inversed pressure gradient in the passage, the leading-edge vortex (LEV) generates on the diffuser leading edge. The LEV then induces the secondary flow in the diffuser passage and then causes the hub-corner separation. Furthermore, the propagation of the diffuser rotating stall is presented in details. The suction-side separation near the hub induces the blockage in the passage. And the shedding vortex from the suction side moves toward the leading edge of the adjacent blade. When the vortex reaches to the leading edge of the adjacent blade, the incidence increase and a new separation occurs on the suction side. With the development of the new separation, the passage becomes blocked gradually and the upstream stalled passage recovers to a normal condition. The rotating stall propagates along the direction of the impeller rotation at about 4.5% of the impeller rotational speed.


Sign in / Sign up

Export Citation Format

Share Document