Piecewise-Linear-Gain Pulse Width Control for Precise Positioning of Structurally Flexible Systems Subject to Stiction and Coulomb Friction

2004 ◽  
Vol 126 (1) ◽  
pp. 139-143 ◽  
Author(s):  
David B. Rathbun ◽  
Martin C. Berg ◽  
Keith W. Buffinton

Pulse width control refers to the use of a control law to determine the duration of fixed-height force pulses for point-to-point position control of a plant that is subject to mechanical friction, including stiction. A quantitative measure of the performance of a pulse width control system is introduced. Applications of this measure suggest that piecewise-linear-gain pulse width control laws will often provide better performance than constant-gain pulse width control laws. A method for designing piecewise-linear-gain pulse width control laws is introduced. The performance measure and piecewise-linear-gain control law design method are demonstrated in applications to the control of the position of the end-effector of an industrial robot.

2020 ◽  
Vol 10 (9) ◽  
pp. 3292 ◽  
Author(s):  
Majid Mehrasa ◽  
Radu Godina ◽  
Edris Pouresmaeil ◽  
Eduardo M. G. Rodrigues ◽  
João P. S. Catalão

In order to reach better results for pulse width modulation (PWM)-based methods, the reference waveforms known as control laws have to be achieved with good accuracy. In this paper, three control laws are created by considering the harmonic components of modular multilevel converter (MMC) state variables to suppress the circulating currents under nonlinear load variation. The first control law consists of only the harmonic components of the MMC’s output currents and voltages. Then, the second-order harmonic of circulating currents is also involved with both upper and lower arm currents in order to attain the second control law. Since circulating current suppression is the main aim of this work, the third control law is formed by measuring all harmonic components of circulating currents which impact on the arm currents as well. By making a comparison between the switching signals generated by the three proposed control laws, it is verified that the second-order harmonic of circulating currents can increase the switching losses. In addition, the existence of all circulating current harmonics causes distributed switching patterns, which is not suitable for the switches’ lifetime. Each upper and lower arm has changeable capacitors, named “equivalent submodule (SM) capacitors” in this paper. To further assess these capacitors, eliminating the harmonic components of circulating currents provides fluctuations with smaller magnitudes, as well as a smaller average value for the equivalent capacitors. Moreover, the second-order harmonic has a dominant role that leads to values higher than 3 F for equivalent capacitors. In comparison with the first and second control laws, the use of the third control-law-based method will result in very small circulating currents, since it is trying to control and eliminate all harmonic components of the circulating currents. This result leads to very small magnitudes for both the upper and lower arm currents, noticeably decreasing the total MMC losses. All simulation results are verified using MATLAB software in the SIMULINK environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Valerii Azarskov ◽  
Anatoly Tunik ◽  
Olha Sushchenko

The design of the control systems of the inertially stabilized platforms (ISPs) as part of airborne equipment for the majority of aircraft has its peculiarity. The presence of rate gyros in the inertial measurement unit gives the possibility to measure the rotation rate of the ISP base, which is the main disturbance interfering with the ISP accuracy. Inclusion of the feedforward disturbance gain in the control law with the simplest PI feedback significantly improves the accuracy of stabilization by the invariance theory. A combination of feedback and feedforward controllers produces a synergetic effect, thus, improving ISP accuracy. This article deals with the design of the airborne ISP control systems consisting of two stages: the parametric optimization of the PI feedback control based on composite “performance-robustness” criterion and the augmentation of the obtained system with feedforward gain. To prove the efficiency of the proposed control laws, the simulation of the ISP was undertaken. We have used a simulation of the heading-hold system of the commuter aircraft Beaver and the yaw rate output of this closed-loop system we have used as a source of the disturbance. The results of modeling proved the efficiency of the proposed design method.


2000 ◽  
Author(s):  
David B. Rathbun ◽  
Martin C. Berg

Abstract The accuracy to which the end effector of a robotic manipulator can be positioned is often limited by structural flexibilities and nonlinear friction. This paper develops a control design methodology for such systems based on pulse width modulation. This methodology achieves comparatively very accurate point-to-point position control and does not require a high fidelity model of either the robot dynamics or the friction behavior. Conditions under which the controller must directly treat plant structural flexibility are presented. Conditions on parameters of the closed loop system that guarantee stability and a well defined level of performance are given. The methodology is demonstrated by application to a six axis industrial robot.


2004 ◽  
Vol 126 (1) ◽  
pp. 131-138 ◽  
Author(s):  
David B. Rathbun ◽  
Martin C. Berg ◽  
Keith W. Buffinton

Pulse width control refers to the use of a control law to determine the duration of fixed-height force pulses for point-to-point position control of a plant that is subject to mechanical friction, including stiction. The use of constant-gain pulse width control laws for precise positioning of structurally flexible plants subject to stiction and Coulomb friction is analyzed. It is shown that when the plant is a simple two-mass system subject to stiction and Coulomb friction, a position error limit cycle can result. Sufficient conditions for stability and self-sustained oscillation of this closed-loop system are derived. The sufficient conditions for stability are used to determine conditions on the plant parameters and the control gain that guarantee closed-loop stability and thus limit-cycle-free operation and zero steady-state position error. The analysis methods that are introduced are demonstrated in applications to the control of the position of the end-effector of an industrial robot.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1732-1746 ◽  
Author(s):  
Loris Roveda ◽  
Nicola Pedrocchi ◽  
Federico Vicentini ◽  
Lorenzo Molinari Tosatti

SUMMARYLight-weight manipulators are used in industrial tasks mounted on mobile platforms to improve flexibility. However, such mountings introduce compliance affecting the tasks. This work deals with such scenarios by designing a controller that also takes into account compliant environments. The controller allows the tracking of a target force using the estimation of the environment stiffness (EKF) and the estimation of the base position (KF), compensating the robot base deformation. The closed-loop stability has been analyzed. Observers and the control law have been validated in experiments. An assembly task is considered with a standard industrial non-actuated mobile platform. Control laws with and without base compensation are compared.


Author(s):  
Yohan Díaz-Méndez ◽  
Leandro Diniz de Jesus ◽  
Marcelo Santiago de Sousa ◽  
Sebastião Simões Cunha ◽  
Alexandre Brandão Ramos

Sliding mode control (SMC) is a widely used control law for quadrotor regulation and tracking control problems. The purpose of this article is to solve the tracking problem of quadrotors using a relatively novel nonlinear control law based on SMC that makes use of a conditional integrator. It is demonstrated by a motivation example that the proposed control law can improve the transient response and chattering shortcomings of the previous approaches of similar SMC based controllers. The adopted Newton–Euler model of quadrotor dynamics and controller design is treated separately in two subsystems: attitude and position control loops. The stability of the control technique is demonstrated by Lyapunov’s analysis and the effectiveness and performance of the proposed method are compared with a similar integral law, also based on SMC, and validated by tracking control problems using numerical simulations. Simulations were developed in the presence of external disturbances in order to evaluate the controller robustness. The effectiveness of the proposed controller was verified by performance indexes, demonstrating less accumulated tracking errors and control activity and improvement in the transient response and disturbance rejection when compared to a conventional integrator sliding mode controller.


Robotica ◽  
2013 ◽  
Vol 31 (8) ◽  
pp. 1275-1283 ◽  
Author(s):  
V. I. Gervini ◽  
E. M. Hemerly ◽  
S. C. P. Gomes

SUMMARYThe design of control laws for flexible manipulators is known to be a challenging problem, when using a conventional actuator, i.e., a motor with gear. This is due to the friction of the nonlinear actuator, which causes torque dead zone and stick-slip behavior, thereby hampering the good performance of the control system. The torque needed to attenuate the vibrations, although calculated by the control law, is consumed by the friction inside the actuator, rendering it ineffective to the flexible structure control. Nonlinear friction varies with different operational conditions of the actuator and a friction compensation mechanism based on these models cannot always keep a good performance. This study proposes a new control strategy using wavelet network to friction compensation. Experimental results obtained with a flexible manipulator attest to the good performance of the proposed control law.


Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

A scheduling strategy of multiple semi-active control laws for various earthquake disturbances is proposed to maximize the control performance. Generally, the semi-active controller for a given structural system is designed as a single control law and the single control law is used for all the forthcoming earthquake disturbances. It means that the general semi-active control should be designed to achieve a certain degree of the control performance for all the assumed disturbances with various time and/or frequency characteristics. Such requirement on the performance robustness becomes a constraint to obtain the optimal control performance. We propose a scheduling strategy of multiple semi-active control laws. Each semi-active control law is designed to achieve the optimal performance for a single earthquake disturbance. Such optimal control laws are scheduled with the available data in the control system. As the scheduling mechanism of the multiple control laws, a command signal generator (CSG) is defined in the control system. An artificial neural network (ANN) is adopted as the CSG. The ANN-based CSG works as an interpolator of the multiple control laws. Design parameters in the CSG are optimized with the genetic algorithm (GA). Simulation study shows the effectiveness of the approach.


Sign in / Sign up

Export Citation Format

Share Document