Unified Kinematic Analysis of General Planar Parallel Manipulators

2004 ◽  
Vol 126 (5) ◽  
pp. 866-874 ◽  
Author(s):  
M. J. D. Hayes ◽  
P. J. Zsombor-Murray ◽  
C. Chen

A kinematic mapping of planar displacements is used to derive generalized constraint equations having the form of ruled quadric surfaces in the image space. The forward kinematic problem for all three-legged, three-degree-of-freedom planar parallel manipulators thus reduces to determining the points of intersection of three of these constraint surfaces, one corresponding to each leg. The inverse kinematic solutions, though trivial, are implicit in the formulation of the constraint surface equations. Herein the forward kinematic solutions of planar parallel robots with arbitrary, mixed leg architecture are exposed completely, and in a unified way, for the first time.

Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


2016 ◽  
Vol 86 (3-4) ◽  
pp. 381-396 ◽  
Author(s):  
Adrián Peidró ◽  
Arturo Gil ◽  
José María Marín ◽  
Luis Payá ◽  
Óscar Reinoso

Author(s):  
Mehdi Tale Masouleh ◽  
Manfred Husty ◽  
Cle´ment Gosselin

In this paper, a general methodology is introduced in order to formulate the FKP of symmetrical parallel mechanisms in a 7-dimensional projective space by the means of the so-called Study’s parameters. The main objective is to consider rigid-body displacement, and consequently the FKP, based on algebraic geometry, rather than rely on classical recipes, such as Euler angles, to assist in problem-solving. The state of the art presented in this paper is general and can be extended to other types of symmetrical mechanisms. In this paper, we limit the concept of kinematic mapping to topologically symmetrical mechanisms, i.e., mechanisms with limbs having identical kinematic arrangement. Exploring the FKP in a higher dimensional space is more challenging since it requires the use of a larger number of coordinates. There are, however, advantages in adopting a large set of coordinates, since this approach leads to expressions with lower degree that do not involve trigonometric functions.


Author(s):  
Curtis L. Collins

In this work, we investigate the geometry and position kinematics of planar parallel manipulators composed of three GPR serial sub-chains, where G denotes a rolling contact, or geared joint, P denotes a prismatic joint, and R denotes a revolute joint. The rolling contact joints provide a passive one degree-of-freedom relative motion between the base and the prismatic links. It is shown, both theoretically and numerically, that when all the G-joints have equal circular contact profiles, there are at most 48 real forward kinematic solutions when the P joints are actuated. The solution procedure is general and can be used to predict and solve for the kinematics solutions of 3-GPR manipulators with any combination of rational contact ratios.


Author(s):  
Robert L. Williams ◽  
Brett H. Shelley

Abstract This paper presents algebraic inverse position and velocity kinematics solutions for a broad class of three degree-of-freedom planar in-parallel-actuated manipulators. Given an end-effector pose and rate, all active and passive joint values and rates are calculated independently for each serial chain connecting the ground link to the end-effector link. The solutions are independent of joint actuation. Seven serial chains consisting of revolute and prismatic joints are identified and their inverse solutions presented. To reduce computations, inverse Jacobian matrices for overall manipulators are derived to give only actuated joint rates. This matrix yields conditions for invalid actuation schemes. Simulation examples are given.


Author(s):  
Roger Boudreau

Abstract In this paper, a real time solution to the forward kinematic problem of a general spherical three-degree-of-freedom parallel manipulator is presented using polynomial learning networks. These networks learn the forward kinematic problem based on a database of input-output examples. After the learning process has been achieved, the networks exhibit very little error when presented with inputs which were not part of the learning database. The computation time required to compute the forward kinematics is very small since the networks consist only of additions and multiplications.


Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


Robotica ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 1463-1477 ◽  
Author(s):  
Houssem Saafi ◽  
Houssein Lamine

SUMMARYThis paper investigates a comparative kinematic analysis between nonredundant and redundant 2-Degree Of Freedom parallel manipulators. The nonredundant manipulator is based on the Five-Bar mechanism, and the redundant one is a 3-RRR planar parallel manipulator. This study is aimed to select the best structure for a haptic application. This latter requires a mechanism with a desired workspace of 10 cm × 10 cm and an admissible force of 5 N in all directions. The analysis criteria are the accuracy of the forward kinematic model and the required actuator torques. Thereby, the geometric parameters of the two structures are optimized in order to satisfy the required workspace such that parallel singularities are overcome. The analysis showed that the nonredundant optimally designed manipulator is more suitable for the haptic application.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Adrián Peidró ◽  
José María Marín ◽  
Arturo Gil ◽  
Óscar Reinoso

This paper analyzes the multiplicity of the solutions to forward kinematics of two classes of analytic robots: 2RPR-PR robots with a passive leg and 3-RPR robots with nonsimilar flat platform and base. Since their characteristic polynomials cannot have more than two valid roots, one may think that triple solutions, and hence nonsingular transitions between different assembly modes, are impossible for them. However, the authors show that the forward kinematic problems of these robots always admit quadruple solutions and obtain analytically the loci of points of the joint space where these solutions occur. Then, it is shown that performing trajectories in the joint space that enclose these points can produce nonsingular transitions, demonstrating that it is possible to design simple analytic parallel robots with two and three degrees-of-freedom (DOF) and the ability to execute these transitions.


Sign in / Sign up

Export Citation Format

Share Document