scholarly journals Make No Mistake

2009 ◽  
Vol 131 (06) ◽  
pp. 48-51
Author(s):  
Jean Thilmany

This paper explains the concept of goof-proofing and its usefulness in engineering design. No standard design rules exist for engineers to follow in anticipation of human error. Human reliability analysis tools such as event trees and fault trees to model a human's contribution to events such as decreasing one's speed on an exit ramp. To minimize human error, engineering students color code wires and use specific prong configurations in the design of an automobile. It is observed that engineers follow failure modes and effects analysis procedures. The failure modes procedure isolates potential failures within a system or product. Effects analysis is the study of the consequences of those failures. The attitude on the part of designers is that they have the requisite knowledge, either from past projects or due to their expertise. The paper concludes that regardless of how engineers go about goof-proofing their designs, they must keep the end user in mind.

Author(s):  
Nikolaos Papakonstantinou ◽  
Joonas Linnosmaa ◽  
Jarmo Alanen ◽  
Bryan O'Halloran

Safety engineering for complex systems is a very challenging task and the industry has a firm basis and trust on a set of established methods like the Probabilistic Risk Assessment (PRA). New methodologies for system engineering are being proposed by academia, some related to safety, but they have a limited chance for successful adoption by the safety industry unless they provide a clear connection and benefit in relation to the traditional methodologies. Model-Based System Engineering (MBSE) has produced multiple safety related applications. In past work system models were used to generate event trees, failure propagation scenarios and for early human reliability analyses. This paper extends previous work, on a high-level interdisciplinary system model for early defense in depth assessment, to support the automatic generation of fault tree statements for specific critical system components. These statements can then be combined into fault trees using software already utilized by the industry. The fault trees can then be linked to event trees in order to provide a more complete picture of an initiating event, the mitigating functions and critical components that are involved. The produced fault trees use a worst-case scenario approach by stating that if a dependency exists then the failure propagation is certain. Our proposed method doesn’t consider specific failure modes and related probabilities, a safety expert can use them as a starting point for further development. The methodology is demonstrated with a case study of a spent fuel pool cooling system of a nuclear plant.


2011 ◽  
Vol 368-373 ◽  
pp. 1365-1369 ◽  
Author(s):  
Xue Xia Yuan ◽  
Wei Liang Jin

In view of the significant failure modes of formwork-supporting system and reinforced- concrete member, the reliability analysis model of time-dependent system affected by human errors during the construction of typical multistory reinforced-concrete buildings was developed. Human Reliability Analysis (HRA) method was applied to simulate the error rates and error magnitudes of the reinforced-concrete members and the formwork-supporting system, and human reliability models were developed, two cases for error-free case and error-included case were considered. Furthermore the check emphasis of formwork-supporting system was pointed during multistory building construction.


2021 ◽  
pp. 104687812110138
Author(s):  
Cagatay Kandemir, ◽  
Metin Celik

Background It is widely accepted that the simulators are important technological instruments which can be utilized as an effective assessment tool in various domains Developing technologies allow the functionality levels of simulators to increase behavioural realism. For this reason, students in higher educations are involved in various useful practices using simulators. Purpose In this respect, simulators can also provide great opportunities to conduct analysis through human error on which this study conceptualized. Model In this context, this study proposes a human error evaluation approach through simulator technology whilst taking advantage of the SOHRA (Shipboard Operation Human Reliability Analysis) method. As a case study, the proposed approach was applied to a simulator environment with the involvement of marine engineering students. Throughout this case, the students were challenged with various error producing conditions (EPCs) while their performances were observed. Results The attendees were achieved good practice when confronted with EPC23 (unreliable instruments), EPC17 (inadequate checking), and EPC5 (spatial & functional incompatibility). However, the points open for improvement are found on EPC2 (time shortage), EPC24 (absolute judgments required), EPC18 (objectives conflict) and EPC9 (technical unlearning). Conclusion This framework can be utilized in simulator-based training activities to increase operational awareness of marine engineering students. The recent developments in simulator technology can boost the effectiveness of the proposed framework.


2019 ◽  
Vol 26 (1) ◽  
pp. 287-294 ◽  
Author(s):  
Youngseung Na ◽  
Seong Kee Yoon ◽  
Jungkurn Park ◽  
Jun Won Suh ◽  
Inseob Song ◽  
...  
Keyword(s):  

Author(s):  
Eric Brehm ◽  
Robert Hertle ◽  
Markus Wetzel

In common structural design, random variables, such as material strength or loads, are represented by fixed numbers defined in design codes. This is also referred to as deterministic design. Addressing the random character of these variables directly, the probabilistic design procedure allows the determination of the probability of exceeding a defined limit state. This probability is referred to as failure probability. From there, the structural reliability, representing the survival probability, can be determined. Structural reliability thus is a property of a structure or structural member, depending on the relevant limit states, failure modes and basic variables. This is the basis for the determination of partial safety factors which are, for sake of a simpler design, applied within deterministic design procedures. In addition to the basic variables in terms of material and loads, further basic variables representing the structural model have to be considered. These depend strongly on the experience of the design engineer and the level of detailing of the model. However, in the clear majority of cases [1] failure does not occur due to unexpectedly high or low values of loads or material strength. The most common reasons for failure are human errors in design and execution. This paper will provide practical examples of original designs affected by human error and will assess the impact on structural reliability.


2021 ◽  
Author(s):  
Gurumurthy Kagita ◽  
Krishnakant V. Pudipeddi ◽  
Subramanyam V. R. Sripada

Abstract The Pressure-Area method is recently introduced in the ASME Boiler and Pressure Vessel (B&PV) Code, Section VIII, Division 2 to reduce the excessive conservatism of the traditional area-replacement method. The Pressure-Area method is based on ensuring that the resistive internal force provided by the material is greater than or equal to the reactive load from the applied internal pressure. A comparative study is undertaken to study the applicability of design rules for certain nozzles in shells using finite element analysis (FEA). From the results of linear elastic FEA, it is found that in some cases the local stresses at the nozzle to shell junctions exceed the allowable stress limits even though the code requirements of Pressure-Area method are met. It is also found that there is reduction in local stresses when the requirement of nozzle to shell thickness ratio is maintained as per EN 13445 Part 3. The study also suggests that the reinforcement of nozzles satisfy the requirements of elastic-plastic stress analysis procedures even though it fails to satisfy the requirements of elastic stress analysis procedures. However, the reinforcement should be chosen judiciously to reduce the local stresses at the nozzle to shell junction and to satisfy other governing failure modes such as fatigue.


Author(s):  
Samet Bicen ◽  
Cagatay Kandemir ◽  
Metin Celik

This study conducts a practical application of shipboard operation human reliability analysis (SOHRA) to a crankshaft overhauling operation of a general cargo ship at dry-docking period. The SOHRA approach includes error producing condition (EPC) and general task type (GTT) parameters to consistently calculate the human error probability (HEP) values of operation steps. In this case, a comprehensive overhauling of main engine was planned at shipyard since the ship has experienced a catastrophic failure. An onboard survey to ship engine room is conducted to monitor the operational conditions. The targeted operation, involves disassembly, maintenance, and reassembly stages, is monitored based on 39 sub-tasks. According to the initial findings, immediate recovery actions are suggested to eliminate critical safety issues in a timely manner. Moreover, an extended discussion through long-term safety recommendations are also provided. The results revealed from case study illustrates that HEP values in maintenance operations are sensitive to ship operating conditions. The proposed approach is found very useful by company executives to support ship technical superintendents in critical operation monitoring. The further study is considered to develop mobile application of SOHRA specific to maintenance operations onboard ships.


Author(s):  
Marilia A. Ramos ◽  
Alex Almeida ◽  
Marcelo R. Martins

Abstract Several incidents in the offshore oil and gas industry have human errors among core events in incident sequence. Nonetheless, human error probabilities are frequently neglected by offshore risk estimation. Human Reliability Analysis (HRA) allows human failures to be assessed both qualitatively and quantitatively. In the petroleum industry, HRA is usually applied using generic methods developed for other types of operation. Yet, those may not sufficiently represent the particularities of the oil and gas industry. Phoenix is a model-based HRA method, designed to address limitations of other HRA methods. Its qualitative framework consists of three layers of analysis composed by a Crew Response Tree, a human response model, and a causal model. This paper applies a version of Phoenix, the Phoenix for Petroleum Refining Operations (Phoenix-PRO), to perform a qualitative assessment of human errors in the CDSM explosion. The CDSM was a FPSO designed to produce natural gas and oil to Petrobras in Brazil. On 2015 an explosion occurred leading to nine fatalities. Analyses of this accident have indicated a strong contribution of human errors. In addition to the application of the method, this paper discusses its suitability for offshore operations HRA analyses.


Sign in / Sign up

Export Citation Format

Share Document