scholarly journals Myth v. Fact

2011 ◽  
Vol 133 (01) ◽  
pp. 24-29 ◽  
Author(s):  
John Reilly ◽  
Allison Crimmins

This article predicts future global energy demand under a business-as-usual scenario. According to the MIT projections, conventional technology supported by fossil fuels will continue to dominate under a business-as-usual scenario. In fact, in the absence of climate policies that would impact energy prices, fossil fuels will supply nearly 80% of global primary energy demand in 2100. Alternative energy technologies will expand rapidly. Non-fossil fuel use will grow from 13% to 20% by 2100, with renewable electricity production expanding nearly tenfold and nuclear energy increasing by a factor of 8.5. However, those sources currently provide such a small share of the world's energy that even rapid growth is not enough to significantly displace fossil fuels. In spite of the growth in renewables, the projections indicate that coal will remain among the least expensive fuel sources. Non-fossil fuel alternatives, such as renewable energy and nuclear energy, will be between 40% and 80% more expensive than coal.

2016 ◽  
Vol 5 (3) ◽  
pp. 51-67
Author(s):  
Mohammad Mehdi Ghiasi ◽  
Alireza Aslani ◽  
Younes Noorollahi

The energy demand has increased dramatically in the recent decades. Due to the limitations and environmental effects of fossil fuels, secure level of energy supply is vital for economic and social development. This work is to review the energy sector in South Africa. After that, the consumptions of coal, oil, natural gas, and nuclear energy are estimated by employing simple exponential smoothing methodology. Finding shows that the primary energy consumption in the South Africa is correlated as a function of population growth rate, industrial growth rate, and GDP.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41625-41679
Author(s):  
Bishwajit Changmai ◽  
Chhangte Vanlalveni ◽  
Avinash Prabhakar Ingle ◽  
Rahul Bhagat ◽  
Lalthazuala Rokhum

An ever-increasing energy demand and environmental problems associated with exhaustible fossil fuels have led to the search for an alternative energy. In this context, biodiesel has attracted attention worldwide as an alternative to fossil fuel.


2019 ◽  
Vol 3 (1-2) ◽  
pp. 73-80 ◽  
Author(s):  
Tatiana Mitrova ◽  
Yuriy Melnikov

Abstract This article provides an overview of Russian energy policy in the context of the global energy transition. Russia, ranking fourth in the world in primary energy consumption and carbon dioxide emissions, adheres to the strategy of “business as usual” and relies on fossil fuels. Decarbonization of the energy sector is not yet on the horizon: a skeptical attitude towards the problem of global climate change prevails among stakeholders. GDP energy intensity remains high, supported by relatively low energy prices and high cost of capital. The share of solar and wind energy in the energy balance is insignificant and is not expected to exceed 1% by 2040. The challenge for Russia in the coming years is to develop a new strategy for the development of its energy sector, which enters a zone of high turbulence—even in the absence of the influence of the climate change agenda—due to increasing global competition, growing technological isolation, and financial constraints.


2019 ◽  
Vol 7 (6) ◽  
Author(s):  
Yessoh Gaudens Thecle Edjoukou ◽  
Bangzhu Zhu ◽  
Minxing Jiang ◽  
Akadje Jean Roland Edjoukou

Forecasting future energy demand values is of paramount importance for proper resource planning. This paper examines energy outlook for the coming decade in Côte d’Ivoire presented as a business as usual scenario. We, therefore, build a forecasting model using the Autoregressive Integrated Moving Average (ARIMA) to estimate primary energy demand and energy demand by fuels. The results indicate that energy demand will increase steadily within the forecasted period (2017-2030). However, the annual growth rate of each fuel,, including the primary energy demand item, will first rise from the year 1990 to the year 2016 and then decrease within the forecasted period except hydropower that will experience a steady increase from 1990 to 2030. Furthermore, it is noticed that the energy structure of the country will still be biofuels (fuelwood and charcoal) intensive with a significant presence of conventional sources of energy. Based on these findings, we propose some policy recommendations.


2018 ◽  
Vol 8 (9) ◽  
pp. 1605 ◽  
Author(s):  
Szymon Firląg ◽  
Michał Piasecki

The main objective of this article is to propose possible requirements for NZEB (nearly zero-energy buildings) renovation definition in heating dominated climate. A survey was carried out on potential approaches and indicators that could be used for the NZEB definition of existing single-family houses in Poland. The process of determining requirements for the NZEB renovation definition was divided into two stages. The cost-optimal U-values of the building’s envelope were initially calculated and, based on them, the energy demand for heating (QH) and the reduction of non-renewable primary energy demand (QP) were estimated. The calculations were made for different energy prices, locations, and two building models. Based on them the requirements for cost-optimal renovation (QH ≤ 60 kWh/(m² year), QP reduction ≥ 75%) and NZEB renovation (QH ≤ 40 kWh/(m² year), QP reduction ≥ 80%) were proposed. In contrast to definitions using only a maximum level of QP, two indicators were used. Such a solution is appropriate for existing buildings because it prevents the situation in which only renewable energy sources (RES) (with a low primary energy factor) will be applied in order to decrease the primary, non-renewable energy demand.


2021 ◽  
Vol 73 (04) ◽  
pp. 18-21
Author(s):  
Pat Davis Szymczak

Natural gas is almost certain to be the fastest-growing fossil fuel in the global energy mix for decades to come, comprising 28% of the global energy mix by 2050. Together with renewables, natural gas will likely fuel 60% of global electricity production, be it as pipeline gas, liquefied natural gas (LNG), or blue hydrogen. These are among the forecasts that appear in the 2020 edition of the GECF (Gas Exporting Countries Forum) Global Gas Outlook 2050 released in February 2021 and providing short-, medium-, and long-term energy projections based on assumptions regarding macroeconomic conditions, energy prices, and policies. The report is updated yearly and is the flagship publication of the organization, which represents countries that control 71% of global gas reserves. It is unique in that it focuses exclusively on the global gas industry, which today is providing for 23% of global energy needs. Headquartered in Doha, Qatar, the GECF is an intergovernmental organization comprising 11 member countries and nine observer states, established in 2001 by Russia and Iran. Moscow and Tehran had hoped that GECF would eventually morph into a “Gas OPEC” but that never happened. The organization’s analyses and forecasts do, however, present a worthwhile snapshot of how the world’s largest gas producers see the industry. Member states in GECF include Algeria, Bolivia, Egypt, Equatorial Guinea, Iran, Libya, Nigeria, Qatar, Russia, Trinidad and Tobago, and Venezuela. Observer countries are Angola, Azerbaijan, Iraq, Kazakhstan, Malaysia, Norway, Oman, Peru, and the UAE. Unconventional Gas To Play Growing Role In its report, the GECF noted that unconventional resources will be playing a growing role in the market and that gas producers will need to emphasize unconventional projects to satisfy growing demand, as well as to invest heavily into exploration to identify and tap into new gas reserves and develop greenfield projects. “It is also important to highlight the increasing interest in hydrogen as a lever to support the deep decarbonization of the world’s economies,” Yury P. Sentyurin, GECF’s Secretary General, wrote in his introduction to the annual outlook. In mentioning hydrogen, Sentyurin is speaking about “blue hydrogen” which is produced from natural gas, and which, when combined with CCUS (carbon capture, utilization, storage) can marry commercial and environmental interests, further positioning natural gas as a transition fuel to bridge the gap between fossil fuels and renewable sources of energy. Blue hydrogen is in fact expected to satisfy half of the hydrogen demand projected worldwide by 2050, Sentyurin points out. Policies being set by countries in the European Union have focused more on costly “green hydrogen” produced from renewable sources; but not in the policies of other nations in regions of the world where growth in energy demand is expected to be the highest. Growth in European energy demand is largely flat.


Energy Policy ◽  
2012 ◽  
Vol 42 ◽  
pp. 329-340 ◽  
Author(s):  
Shiwei Yu ◽  
Yi-Ming Wei ◽  
Ke Wang

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junli Shi ◽  
Junyu Hu ◽  
Mingyang Ma ◽  
Huaizhi Wang

Purpose The purpose of this paper is to present a method for the environmental impact analysis of machine-tool cutting, which enables the detailed analysis of inventory data on resource consumption and waste emissions, as well as the quantitative evaluation of environmental impact. Design/methodology/approach The proposed environmental impact analysis method is based on the life cycle assessment (LCA) methodology. In this method, the system boundary of the cutting unit is first defined, and inventory data on energy and material consumptions are analyzed. Subsequently, through classification, five important environmental impact categories are proposed, namely, primary energy demand, global warming potential, acidification potential, eutrophication potential and photochemical ozone creation potential. Finally, the environmental impact results are obtained through characterization and normalization. Findings This method is applied on a case study involving a machine-tool turning unit. Results show that primary energy demand and global warming potential exert the serious environmental impact in the turning unit. Suggestions for improving the environmental performance of the machine-tool turning are proposed. Originality/value The environmental impact analysis method is applicable to different machine tools and cutting-unit processes. Moreover, it can guide and support the development of green manufacturing by machinery manufacturers.


2018 ◽  
Vol 192 ◽  
pp. 790-800 ◽  
Author(s):  
Heiko Dunkelberg ◽  
Johannes Wagner ◽  
Conrad Hannen ◽  
B. Alexander Schlüter ◽  
Long Phan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document