The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation

2005 ◽  
Vol 128 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Lei Zuo ◽  
Samir A. Nayfeh

Whenever a tuned-mass damper is attached to a primary system, motion of the absorber body in more than one degree of freedom (DOF) relative to the primary system can be used to attenuate vibration of the primary system. In this paper, we propose that more than one mode of vibration of an absorber body relative to a primary system be tuned to suppress single-mode vibration of a primary system. We cast the problem of optimization of the multi-degree-of-freedom connection between the absorber body and primary structure as a decentralized control problem and develop optimization algorithms based on the H2 and H-infinity norms to minimize the response to random and harmonic excitations, respectively. We find that a two-DOF absorber can attain better performance than the optimal SDOF absorber, even for the case where the rotary inertia of the absorber tends to zero. With properly chosen connection locations, the two-DOF absorber achieves better vibration suppression than two separate absorbers of optimized mass distribution. A two-DOF absorber with a negative damper in one of its two connections to the primary system yields significantly better performance than absorbers with only positive dampers.

Author(s):  
Lei Zuo ◽  
Samir A. Nayfeh

Whenever a tuned-mass damper is attached to a primary system, there is potential for utilization of motion of the absorber body in more than one degree of freedom relative to the primary system. In this paper, we propose that more than one mode of vibration of an absorber body relative to a primary system be tuned to a single natural frequency of the primary system. We cast the problem of optimizing the multi-degree-of-freedom connection between the absorber body and primary structure as a decentralized control problem, and develop optimization algorithms based on the H2 and H-infinity norms to minimize the response to random and harmonic excitations, respectively. We find that a two-DOF absorber can attain better performance than the optimal SDOF absorber, even for the case where the rotary inertia of the absorber tends to be zero. With properly chosen connection locations, the two-DOF absorber can achieve better vibration suppression than two separate absorbers of optimized mass distribution. We also find that a two-DOF absorber with negative dampers in some of the connections to the primary system can obtain much better performance than absorbers with only positive dampers.


Author(s):  
Andrew J. Dick ◽  
Aaron Atzil ◽  
Satish Nagarajaiah

Vibration attenuation devices are used to reduce the vibrations of various mechanical systems and structures. In this work, an analytical method is proposed to provide the means to investigate the influence of system parameters on the dynamic response of a system. The method of multiple scales is used to calculate an approximate broadband solution for a two degree-of-freedom system consisting of a linear primary structure and a nonlinear tuned mass damper. The model is decoupled, approximate analytical solutions are calculated, and then they are combined to produce the desired frequency-response information. The approach is initially applied to a linear two degree-of-freedom system in order to verify its performance. The approach is then applied to the nonlinear system in order to study how varying the values of parameters associated with the nonlinear absorber affect its ability to attenuate the response of the primary structure.


Author(s):  
Meysam Raei ◽  
Morteza Dardel

In this work, the combination effect of tuned mass damper and high static low dynamic stiffness (HSLDS) isolator is investigated in reducing the vibration amplitude of Euler–Bernoulli beam with a nonlinear attachment. The performance of the absorber is studied in two cases; the first case, HSLDS isolator is one degree of freedom and the second case, two degree of freedom isolator is combined of HSLDS isolator and tuned mass damper absorber. By comparing the performance of these two isolators, it is revealed the two degree of freedom isolator has much better performance in direct force excitation and also improves the system performance in the base excitation. This isolator reduces the system amplitude at all frequencies, especially ultra-low frequencies, which is the main advantage to this isolator with respect to other isolators and reduces the natural frequency until the phenomenon of resonance occurs at a lower frequency. Moreover, decreasing the natural frequency increases the damping and in quasi zero stiffness and negative stiffness structure, the system has supercritical damping. This isolator is studied for positive, quasi zero and negative stiffness. The results show that the system with quasi zero stiffness has the best performances. Also, by increasing the excitation amplitude, the isolator loses its effectiveness.


2021 ◽  
pp. 107754632110264
Author(s):  
Grigorios M Chatziathanasiou ◽  
Nikolaos A Chrysochoidis ◽  
Dimitris A Saravanos

Tuned mass dampers are well-known devices for efficient reduction of structural vibrations; however, they can only control the vibration of a single mode in a narrow frequency range and are not easily retunable. This article presents a semi-active tuned mass damper, consisting of a piezoelectric device connected to an external resistive–inductive electric circuit, which enables multi-modal vibration control, is highly tunable, and introduces high damping. The dynamics of the coupled electromechanical system, which includes the primary and auxiliary masses, the piezoelectric device, and the shunt circuit, are analyzed and the effect of the resistance and inductance is investigated. An experimental prototype using a specialty piezoelectric device is fabricated and tested. The experimental measurements greatly agree with the analytical results, validating the strong electromechanical coupling and the enhanced vibration suppression capabilities of the proposed damper. Moreover, the variation of inductive impedance demonstrates substantial semi-active broadband multi-modal vibration control potential, by introducing an additional highly tunable electromechanical resonant oscillator in the system dynamics, and also by enabling the enhancement of coupling and energy dissipation on targeted modal frequencies.


2021 ◽  
Vol 83 (6) ◽  
pp. 125-139
Author(s):  
Afham Zulhusmi Ahmad ◽  
Aminudin Abu ◽  
Lee Kee Quen ◽  
Nor’azizi Othman ◽  
Faridah Che In

This paper presents a systematic experimental investigation on the performance of a Multiple Tuned Mass Dampers (MTMDs) attached to a structural system under dynamic load excitation. A Modal Experimental Analysis (EMA) of a three-story structural frame equipped with a viscous damper system was carried out through a series of shaking table tests to evaluate the performance and verify the analysis approach. Each of the TMDs consists of a mass attached to a structural floor via Thermoplastic Polyurethane (TPU) viscous bearing. Initially, the TMD was designed solely to control single mode vibration and then the mechanism is extended for the application of controlling multimode responses. The experiment demonstrated that the proposed viscous dampers exhibit good performance in reducing the response of structures under dynamic loads, and able to control both fundamental and higher vibration modes of a Multiple Degree of Freedom (MDOF) primary system effectively. It was also evident that the attachment of the air dashpot dampers to each of TMDs lead to better efficiency on controlling the amplification of the damper mass and significantly contribute to better structural modal tuning.


2021 ◽  
Author(s):  
Jan Høgsberg

Coupled bending-torsion vibrations of a beam with a single cross-section axis of symmetry are mitigated by a two-degree-of-freedom (dof) tuned mass damper with a coupling analogous to that of the beam. By modal truncation a four-degree-of-freedom model is derived for tmd tuning. Because of the analogous tmd properties, a stiffness tuning formula identical to that for the classic tuned mass damper secures inverse relations between all four undamped natural frequencies. Expressions for the tmd damping are subsequently found by a numerical search, which maximizes the smallest of the four damping ratios, resulting in equal damping in three of the four modes. The two-dof coupled tmd is finally assessed by numerical root locus and frequency response analysis for a full flexible beam.


2021 ◽  
pp. 107754632098430
Author(s):  
Fan Yang ◽  
Ramin Sedaghati ◽  
Ebrahim Esmailzadeh

To date, considerable attention has been paid to the development of structural vibration suppression techniques. Among all vibration suppression devices and techniques, the tuned mass damper is one of the most promising technologies due to its mechanical simplicity, cost-effectiveness, and reliable operation. In this article, a critical review of the structural vibration suppression using tuned mass damper technology will be presented mainly focused on the following four categories: (1) tuned mass damper technology and its modifications, (2) tuned mass damper technology in discrete and continuous structures (mathematical modeling), (3) optimization procedure to obtain the optimally designed tuned mass damper system, and (4) active tuned mass damper and semi-active tuned mass damper with the practical realization of the tuned mass damper technologies.


2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Nguyen Van Khang ◽  
Trieu Quoc Loc ◽  
Nguyen Anh Tuan

There are problems in mechanical, structural and aerospace engineering that can be formulated as Nonlinear Programming. In this paper, the problem of parameters optimization of tuned mass damper for three-degree-of-freedom vibration systems is investigated using sequential quadratic programming method. The objective is to minimize the extreme vibration amplitude of vibration models. It is shown that the constrained formulation, that includes lower and upper bounds on the updating parameters in the form of inequality constraints, is important for obtaining a correct updated model.


Sign in / Sign up

Export Citation Format

Share Document