scholarly journals Frictional Response of Bovine Articular Cartilage Under Creep Loading Following Proteoglycan Digestion With Chondroitinase ABC

2005 ◽  
Vol 128 (1) ◽  
pp. 131-134 ◽  
Author(s):  
Ines M. Basalo ◽  
Faye Hui Chen ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

The specific aim of this study was to investigate the effect of chondroitinase ABC treatment on the frictional response of bovine articular cartilage against glass, under creep loading. The hypothesis is that chondroitinase ABC treatment increases the friction coefficient of bovine articular cartilage under creep. Articular cartilage samples (n=12) harvested from two bovine knee joints (1-3months old) were divided into a control group (intact specimens) and a treated group (chondroitinase ABC digestion), and tested in unconfined compression with simultaneous continuous sliding (±4mm at 1mm∕s) under a constant applied stress of 0.5MPa, for 2500s. The time-dependent response of the friction coefficient was measured. With increasing duration of loading, treated samples exhibited a significantly higher friction coefficient than control samples as assessed by the equilibrium value (treated: μeq=0.19±0.02; control: μeq=0.12±0.03; p=0.002), though the coefficient achieved immediately upon loading did not increase significantly (treated: μmin=0.0053±0.0025; control: μmin=0.037±0.0013; p=0.19). Our results demonstrate that removal of the cartilage glycosaminoglycans using chondroitinase ABC significantly increases the overall time-dependent friction coefficient of articular cartilage. These findings strengthen the motivation for developing chondroprotective strategies by increasing cartilage chondroitin sulfate content in osteoarthritic joints.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Huacheng Hou ◽  
Ke Zheng ◽  
Guanghu Wang ◽  
Shiro Ikegawa ◽  
Minghao Zheng ◽  
...  

Autologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS) macroscopic scores, the modified O’Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2), aggrecan, matrix metalloproteinase (MMP), and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5) expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1β(IL-1β) in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury.


Author(s):  
Ramaswamy Krishnan ◽  
Monika Kopacz ◽  
Michael J. Carter ◽  
Gerard A. Ateshian

This study investigates the hypothesis that the equilibrium friction coefficient of cartilage decreases with increasing compressive strain. Furthermore, when accounting for this strain-dependence, it is hypothesized that the temporal response of the friction coefficient correlates linearly with interstitial fluid load support, in the configuration of unconfined compression stress-relaxation. Both hypotheses were confirmed from theory and experiment.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
S. M. T. Chan ◽  
C. P. Neu ◽  
K. Komvopoulos ◽  
A. H. Reddi ◽  
P. E. Di Cesare

Friction and wear of four common orthopaedic biomaterials, alumina (Al2O3), cobalt-chromium (CoCr), stainless steel (SS), and crosslinked ultra-high-molecular-weight polyethylene (UHMWPE), sliding against bovine articular cartilage explants were investigated by reciprocating sliding, nanoscale friction and roughness measurements, protein wear assays, and histology. Under the experimental conditions of the present study, CoCr yielded the largest increase in cartilage friction coefficient, largest amount of protein loss, and greatest change in nanoscale friction after sliding against cartilage. UHMWPE showed the lowest cartilage friction coefficient, least amount of protein loss, and insignificant changes in nanoscale friction after sliding. Although the results are specific to the testing protocol and surface roughness of the examined biomaterials, they indicate that CoCr tends to accelerate wear of cartilage, whereas the UHMWPE shows the best performance against cartilage. This study also shows that the surface characteristics of all biomaterials must be further improved to achieve the low friction coefficient of the cartilage/cartilage interface.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenquan Zhou ◽  
Zhenhan Deng ◽  
Yuwei Liu ◽  
Yizi Zheng ◽  
Shiwei Yang ◽  
...  

Osteoarthritis (OA), one of the most common chronic musculoskeletal disorders, is deemed to be correlated with aging. The SIRT1 activator, resveratrol, acts as a crucial regulator of aging and may have a potential therapeutic effect on OA. Rabbit OA models were established through destabilized medial meniscus surgery. A total of 40 healthy male New Zealand rabbits were divided into five groups: control group (sham operation), OA group, as well as low dose (LD), middle dose (MD), and high dose (HD) resveratrol-treated OA groups. 6 weeks after operation, 0.8 ml of normal saline was injected into the knee joints every other day in the control and OA groups, and 0.8 ml of 5, 10, and 15 μmol/L resveratrol was injected into the knee joints every other day in the LD, MD, and HD group, respectively. The rabbits were sacrificed 2 weeks after medication, and the articular cartilage of the knee joint was collected for Micro-CT, histology and Western blot analysis. Obvious articular cartilage lesion and joint space narrowing were detected in the OA group. Compared with the OA group, less osteoarthritic changes were observed in the MD and HD groups. The MD and HD groups had significantly lower bone volume fraction, trabecular number and Mankin scores than the LD and OA groups (p < 0.05). No significant difference was found between the OA and LD groups (p > 0.05). The expressions of SIRT1 and p53 detected by western blot were consistent with the aforementioned findings. Therefore, resveratrol can activate the SIRT1 gene to play a protective role in the OA process by inhibiting chondrocyte apoptosis, trabecular bone number increasing of the subchondral bone, as well as elevation of bone density. It demonstrated the importance of SIRT1 in maintaining articular cartilage health and provided a promising therapeutic intervention in the treatment of OA.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Eric Tong ◽  
Grace D. O'Connell ◽  
Terri-Ann N. Kelly ◽  
Clark T. Hung

Osteoarthritis, a chronic malady characterized by joint pain and swelling, is caused by damage to articular cartilage and is perpetuated by low-grade inflammation.  Treatments for osteoarthritis do exist, but many treatments focus on coping with the disease rather than curing it.  Surgical options that replace damaged cartilage tissue with that of donor cartilage tissue or cartilage tissue from other parts of articular joints face complications especially when the tissue is not of the correct size or does not have native-like properties. A more suitable treatment option for osteoarthritis is to develop an in vitro tissue-engineered cartilage construct that can be grown using the patient’s own cells and to surgically remove the patient’s damaged cartilage and replace it with the tissue-engineered cartilage. A challenge in developing such a treatment option is producing tissue-engineered cartilage with mechanical properties akin to those of native human articular cartilage. This challenge may be overcome by maximizing the production of type II collagen by the chondrocytes in vitro. One way to maximize collagen production is through the application of chondroitinase ABC, an enzyme which temporarily suppresses proteoglycans in the cartilage matrix to create more space for type II collagen to develop. In this study, two two levels of cABC treatment were applied (“high” and “low”) to cartilage tissue constructs. The “low” cABC treated group received daily feeding of 0.075 U/mL from day 14 to 21 followed by a replacement of chondrogenic media without cABC.  The “high” cABC treated group received a single addition of 0.15 U/mL from day 14 to 16 followed by a replacement of chondrogenic media without cABC.  At the end of 42 days, the constructs were subjected to mechanical testing and biochemical analyses. These analyses showed that the high cABC treatment yielded more native-like mechanical properties when compared to the low cABC treatment and the control results.  Biochemical and histological analyses confirmed that the proteoglycan and collagen II content were higher in the low and high cABC treated groups when compared to the control. All analyses show that the most efficient application of chondroitinase ABC is through a two day duration treatment of a higher concentration (0.15 U/mL).


Author(s):  
Shota Mochizuki ◽  
Shun Yanagida ◽  
Hiromichi Fujie

Articular cartilage is consisted of the chondrocyte, collagen fibers and proteoglycan, and interstitial fluid. Basalo et al reported that the coefficient of friction of bovine articular cartilage on a glass surface measured in unconfined compression fashion was increased by the degeneration of proteoglycan [1]. In their friction test, it was difficult to test a small cartilage sample having undulation while the loaded area in cartilage specimen was almost unchanged during friction. For the assessment of frictional properties of enzymatically degenerated cartilage in more physiological condition, we developed a friction tester that allows for performing friction tests of articular cartilage surface against a spherical indenter. With the tester, the loaded area in cartilage specimen translated along with frictional motion while the compressive stress exceeded more than 1 MPa. In the present study, the effect of enzymatic degeneration of proteoglycan and collagen fiber on property of articular cartilage using the friction tester.


2015 ◽  
Vol 67 (2) ◽  
pp. 325-333
Author(s):  
R.B. Eleotério ◽  
K.C.S. Pontes ◽  
J.P. Machado ◽  
E.C.C. Reis ◽  
P.S. Ferreira ◽  
...  

Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24), compared with animals that did not receive the product (control group, CG, n=24). Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.


Author(s):  
A J Kerin ◽  
M R Wisnom ◽  
M A Adams

Articular cartilage provides the smooth bearing surfaces in freely moving (synovial) joints. Its mechanical properties are important because structural failure of cartilage is closely associated with joint disorders, including osteoarthritis. Some mechanical properties of cartilage are well characterized, but little is known about its compressive strength. A technique for measuring cartilage compressive strength is evaluated, and an overview of experiments which relate strength to stiffness and tissue hydration is given. Specimens of bovine articular cartilage-on-bone, approximately 15 mm square, were loaded on a hydraulic materials testing machine using flat impermeable indentors. Linear-ramp loading/unloading cycles of 1 s duration, and of increasing severity, were applied until failure was evident on force-displacement graphs. Some specimens were tested following a 30 min period of creep loading. Inkstaining and histology were used to locate the site of initial damage to each specimen. Specimen failure occurred first in the cartilage surface layer at a nominal applied stress of 14–59 MPa (mean 35.7 MPa). Mechanical properties were little affected by specimen or indentor size, provided both remained within defined limits, and compressive strength could be measured to an accuracy of approximately ±5 per cent. Compressive stiffness was a significant predictor of strength, but only if it was measured at high levels of stress. Strength increased following creep-induced water loss, and initial mechanical damage could propagate under moderate cyclic loading. This technique for measuring cartilage compressive strength has potential for investigating the causes of cartilage failure in vivo


Sign in / Sign up

Export Citation Format

Share Document