Transient Vibration Analysis of Open Circular Cylindrical Shells

2005 ◽  
Vol 128 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Selvakumar Kandasamy ◽  
Anand V. Singh

A numerical method based on the Rayleigh-Ritz method has been presented for the forced vibration of open cylindrical shells. The equations are derived from the three-dimensional strain-displacement relations in the cylindrical coordinate system. The middle surface of the shell represents the geometry, which is defined by an angle that subtends the curved edges, the length, and the thickness. The displacement fields are generated with a predefined set of grid points on the middle surface using considerably high-order polynomials. Each grid point has five degrees of freedom, viz., three translational components along the cylindrical coordinates and two rotational components of the normal to the middle surface. Then the strain and kinetic energy expressions are obtained in terms of these displacement fields. The differential equation governing the vibration characteristics of the shell is expressed in terms of the mass, stiffness, and the load consistent with the prescribed displacement fields. The transient response of the shell with and without damping is sought by transforming the equation of motion to the state-space model and then the state-space differential equations are solved using the Runge-Kutta algorithm.

1991 ◽  
Vol 44 (11S) ◽  
pp. S279-S284 ◽  
Author(s):  
J. A. Wickert ◽  
C. D. Mote

Through a convective acceleration component, the equations of motion for axially-moving materials are skew-symmetric in the state space formulation, so that the response problem is best analyzed within the broader context of continuous gyroscopic systems. With particular application to the prototypical traveling string and beam models, a modal analysis that associates degrees of freedom with the complex state eigenfunctions and their conjugates is presented. This procedure is well-suited for harmonic excitation sources, and in some instances, it is more convenient than previous methods which decompose the modal coordinates, eigenfunctions, and generalized forces into real and imaginary components. Also from the state space perspective, Rayleigh’s quotient for gyroscopic systems provides a variational method for determining the eigensolutions of axially-moving materials. Ritz discretization of the quotient can make effective use of the speed-adapting modes of the traveling string and beam models as they are rich in phase, as well as amplitude, content.


2020 ◽  
Vol 25 (11) ◽  
pp. 2050-2075
Author(s):  
Simon R. Eugster ◽  
Giuseppe Capobianco ◽  
Tom Winandy

Using the non-standard geometric structure proposed by Loos, we present a coordinate-free formulation of the theory for time-dependent finite-dimensional mechanical systems with n degrees of freedom. The state space containing the system’s information on time, position and velocity is defined as a (2 n+1)-dimensional affine bundle over an ( n+1)-dimensional generalized space-time. The main goal is to present a geometric postulate that characterizes a second-order vector field whose integral curves describe the motions of a time-dependent finite-dimensional mechanical system. The core objects of the postulate are differential two-forms on the state space, called action forms, which are in a bijective relation with second-order vector fields. The requirements for a differential two-form to be an action form allow for a coordinate-free definition of non-potential forces, which may depend on time, position and velocity. Finally, we show that not only Lagrange’s equations but also Hamilton’s equations follow directly as mere coordinate representations of the same coordinate-free postulate.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342002 ◽  
Author(s):  
TED JACOBSON

Both AdS/CFT duality and more general reasoning from quantum gravity point to a rich collection of boundary observables that always evolve unitarily. The physical quantum gravity states described by these observables must be solutions of the spatial diffeomorphism and Wheeler–De Witt constraints, which implies that the state space does not factorize into a tensor product of localized degrees of freedom. The "firewall" argument that unitarity of black hole S-matrix implies the presence of a highly excited quantum state near the horizon is based on such a factorization, hence is not applicable in quantum gravity. In fact, there appears to be no conflict between boundary unitarity and regularity of the event horizon.


2011 ◽  
Vol 338 ◽  
pp. 431-435 ◽  
Author(s):  
Yu Feng Luo ◽  
Yuan Shan Li ◽  
Xu Chen

This papers deals with fast solving method of natural frequency and vibration isolation coefficient of multiple degrees of freedom vibration isolation system. In the foundation of a mathematical model of vibration motion differential equation, a new state space method is derived and presented. Through transforming the vibration isolation differential equations into the state space equations, it is convenient to facilitate the solution of vibration isolation coefficient of vibration isolation system of multiple degrees of freedom with damping, by using the state space method and the MATLAB/Simulink module. Simulation results showed the result is consistent with the theory result. Simulation results also showed that with the help of damping, the maximal vibration isolation coefficient of x direction is lowered from 90 to 3.2 in the 5.31Hz, which eliminate the resonance phenomenon. In y and z direction, the maximal vibration isolation coefficient is also decreased from 78 to 2.4 and from 210 to 2.35. The state space method can find further applications on the selection of vibration isolation system and the evaluation of vibration isolation efficiency.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ji Chol ◽  
Ri Jun Il

Abstract The modeling of counter-current leaching plant (CCLP) in Koryo Extract Production is presented in this paper. Koryo medicine is a natural physic to be used for a diet and the medical care. The counter-current leaching method is mainly used for producing Koryo medicine. The purpose of the modeling in the previous works is to indicate the concentration distributions, and not to describe the model for the process control. In literature, there are no nearly the papers for modeling CCLP and especially not the presence of papers that have described the issue for extracting the effective components from the Koryo medicinal materials. First, this paper presents that CCLP can be shown like the equivalent process consisting of two tanks, where there is a shaking apparatus, respectively. It allows leachate to flow between two tanks. Then, this paper presents the principle model for CCLP and the state space model on based it. The accuracy of the model has been verified from experiments made at CCLP in the Koryo Extract Production at the Gang Gyi Koryo Manufacture Factory.


Author(s):  
Chung-Hao Wang

An analytical solution of the problem of a cylindrically anisotropic tube which contains a line dislocation is presented in this study. The state space formulation in conjunction with the eigenstrain theory is proved to be a feasible and systematic methodology to analyze a tube with the existence of dislocations. The state space formulation which expediently groups the displacements and the cylindrical surface traction can construct a governing differential matrix equation. By using Fourier series expansion and the well developed theory of matrix algebra, the asymmetrical solutions are not only explicit but also compact in form. The dislocation considered in this study is a kind of mixed dislocation which is the combination of edge dislocations and a screw dislocation and the dislocation line is parallel to the longitudinal axis of the tube. The degeneracy of the eigen relation and the technique to determine the inverse of a singular matrix are thoroughly discussed, so that the general solutions can be applied to the case of isotropic tubes, which is one of the novel features of this research. The results of isotropic problems, which are belong to the general solutions, are compared with the well-established expressions in the literature. The satisfied correspondences of these comparisons indicate the validness of this study. A cylindrically orthotropic tube is also investigated as an example and the numerical results for the displacements and tangential stress on the outer surface are displayed. The effects on surface stresses due to the existence of a dislocation appear to have a characteristic of localized phenomenon.


Sign in / Sign up

Export Citation Format

Share Document