Time-Variant Reliability Assessment of FPSO Hull Girder With Long Cracks

2006 ◽  
Vol 129 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Efrén Ayala-Uraga ◽  
Torgeir Moan

An efficient time-variant reliability formulation for the safety assessment of an aging floating production storage and offloading (FPSO) vessels with the presence of through-thickness cracks (i.e., long cracks), is presented in this paper. Often in ship structures, cracks are detected by means of close visual inspection when they have already propagated through the thickness. The propagation of long cracks in stiffened panels is therefore considered, as they may be present in critical details of the deck and/or bottom plating of the vessel. Although it has been found that stiffened panels are tolerant to fatigue cracking, the safety of such structural components with the presence of long cracks may be threatened when exposed to overload extreme conditions, i.e., brittle or ductile fracture may occur. The probability of brittle fracture of an aging hull structure, i.e., a stiffened panel at the bottom plating with the presence of long cracks is studied in this paper. The mean stress effect due to the continuously varying still-water loading as well as residual stresses is explicitly accounted for in the crack growth calculation procedure presented herein. An analytical model is established for determining the equivalent long-term stress range including the mean stress effect. The continuously varying still-water load effects due to the operational nature of FPSOs introduce additional uncertainties in the estimation of fatigue damage as well as in the likelihood of fracture failure mode. In the present case study it is found that the time-invariant approach is a good approximation when dealing with the time-variant reliability problem. One of the main conclusions drawn from this study is that the still-water mean stress has a significant effect on the failure probabilities of stiffened panels with long cracks under brittle fracture mode.

Author(s):  
Efre´n Ayala-Uraga ◽  
Torgeir Moan

An efficient time-variant reliability formulation for the safety assessment of an aging Floating Production Storage and Offloading (FPSO) vessels with the presence of through-thickness cracks (i.e. long cracks), is presented in this paper. Often in ship structures, cracks are detected by means of close visual inspection when they have already propagated through the thickness. The propagation of long cracks in stiffened panels is therefore considered, as they may be present in critical details of the deck and/or bottom plating of the vessel. The mean stress effect due to the continuously varying still-water loading as well as residual stresses is explicitly accounted for in the crack growth calculation. An analytical model is established for determining the equivalent long-term stress range. Although it has been found that stiffened panels are tolerant to fatigue cracking, the probability of brittle fracture of an aging hull structure becomes more relevant with the presence of long cracks. The continuously varying still-water load effects due to the operational nature of FPSOs introduce additional uncertainties in the estimation of fatigue damage as well as in the likelihood of fracture failure mode. These uncertainties are accordingly considered in the analyses.


Author(s):  
Masayuki Kamaya

The mean stress effect on the fatigue life of Type 316 stainless steel was investigated at 325°C in simulated PWR primary water. It was shown that, as shown in high-temperature air environment, the fatigue life was extended by applying the mean stress under the same stress amplitude. An increase in the maximum peak stress by applying the mean stress induced additional plastic strain and this hardened the material. On the other hand, the fatigue life was shortened by the mean stress for the same strain range. The ratcheting strain caused by applying mean stress accelerated crack mouth opening and reduced fatigue life. It was also shown that the fatigue life in the simulated PWR primary water was shorter than that in air even without the mean stress. The magnitude of the reduction depended on the strain range. The reduction in fatigue life was the maximum when the strain range was 0.6%. The environmental effect disappeared when the effective strain was less than 0.4%.


Author(s):  
Yun Wang ◽  
Hisamitsu Hatoh ◽  
Masato Yamamoto ◽  
Motoki Nakane ◽  
Akihiko Hirano ◽  
...  

Based on the precedent design fatigue curves and recent fatigue data obtained from materials with different mechanical properties, new design fatigue curves with high general versatility in air have been developed by The Japan Welding Engineering Society (JWES). Structural materials with different tensile strength are utilized in fatigue tests to verify the validity of these design fatigue curves and discuss the mean stress effect. The materials employed in this study are austenitic stainless steel (SS) SUS316LTP, carbon steel (CS) STPT370, low-alloy steels (LASs) SQV2A and SCM435H, all of which are used in the structural components of nuclear power plants of Japan. The best-fit curves (BFCs) are formulated by using the parameter of tensile strength to describe the relationship between strain (stress) amplitude and fatigue life [1]. The results of fully reversed axial fatigue tests conducted with small-scale test specimens of those materials in air at ambient temperature show good agreement with the developed BFCs. The results of fatigue tests also indicate that the mean stress effect is remarkable in materials with higher tensile strength. The applicability of Modified Goodman and Smith-Watson-Topper (SWT) approaches to the design fatigue curves is compared and discussed when considering mean stress effect. The correction of mean stress effect with SWT approach shows a good agreement with the developed BFCs.


2002 ◽  
Vol 124 (2) ◽  
pp. 383-387 ◽  
Author(s):  
A. L. Gyekenyesi

The primary objective of this report involves studying and developing various experimental techniques for accurate measurement of the mean stress effect in thermoelastic stress analysis (TSA, also recognized as SPATE: stress pattern analysis by thermal emission). The analysis of cyclic mean stresses at the coupon level directly relates to the measurement of residual stresses in structures. In a previous study by the authors, it was shown that cyclic mean stresses significantly influenced the TSA results for titanium and nickel-based alloys, although, difficulties were encountered concerning the quantification of the mean stress effect because of large test-to-test variations. This study continues the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis is included which involves analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The rather complex analysis of the temperature response involves obtaining the first and second harmonic amplitudes for 16384 infrared detectors (128×128 focal plane array). Upon establishing a protocol for mean stress measurements in the laboratory using the TSA technique, the next step is to utilize the method to assess residual stress states in complex structures during manufacturing and life.


2018 ◽  
Vol 53 (8) ◽  
pp. 663-675 ◽  
Author(s):  
Grzegorz Lesiuk ◽  
Mieczysław Szata ◽  
Dariusz Rozumek ◽  
Zbigniew Marciniak ◽  
José Correia ◽  
...  

In this research, a novel approach of the fatigue crack growth rate description has been proposed. Based on theoretical and experimental approach, the mean stress effect expressed by R-ratio is present in classical da/dN–Δ K diagram. According to energy approach – based on the irrevocably dissipated energy accumulated in material (hysteresis loop) during fatigue process – the mean stress effect can be minimalized. Experimental validation of the proposed model was performed using results of fatigue crack propagation data for S355 and 41Cr4 steels in terms of strain energy density parameter Δ S or cyclic J-integral range –Δ J. In contrast to the force approach based on Kmax (or Δ K), the energy parameters Δ S or Δ J represent unambiguously the fatigue crack propagation rate, without influence of mean stress effect – R-ratio. However, in near threshold range of kinetic fatigue fracture diagram, the energy parameter displays a slight dispersion of the experimental data. According to the crack closure theory and its U-Elber parameter, the dispersion of experimental data is decreased. Therefore, the crack closure effects have a high significance in energy model – similar to the ‘force approach’ based on Δ K concept.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Masayuki Kamaya

The mean stress effect on the fatigue life of type 316 stainless steel was investigated in simulated pressurized water reactor (PWR) primary water and air at 325 °C. The tests in air environment have revealed that the fatigue life was increased with application of the positive mean stress for the same stress amplitude because the strain range was decreased by hardening of material caused by increased maximum peak stress. On the other hand, it has been shown that the fatigue life obtained in simulated PWR primary water was decreased compared with that obtained in air environment even without the mean stress. In this study, type 316 stainless steel specimens were subjected to the fatigue test with and without application of the positive mean stress in high-temperature air and PWR water environments. First, the mean stress effect was discussed for high-temperature air environment. Then, the change in fatigue life in the PWR water environment was evaluated. It was revealed that the change in the fatigue life due to application of the mean stress in the PWR water environment could be explained in the same way as for the air environment. No additional factor was induced by applying the mean stress in the PWR water environment.


Sign in / Sign up

Export Citation Format

Share Document