On the Use of High-Order Accurate Solutions of PNS Schemes as Basic Flows for Stability Analysis of Hypersonic Axisymmetric Flows

2007 ◽  
Vol 129 (10) ◽  
pp. 1328-1338 ◽  
Author(s):  
Kazem Hejranfar ◽  
Vahid Esfahanian ◽  
Hossein Mahmoodi Darian

High-order accurate solutions of parabolized Navier–Stokes (PNS) schemes are used as basic flow models for stability analysis of hypersonic axisymmetric flows over blunt and sharp cones at Mach 8. Both the PNS and the globally iterated PNS (IPNS) schemes are utilized. The IPNS scheme can provide the basic flow field and stability results comparable with those of the thin-layer Navier–Stokes (TLNS) scheme. As a result, using the fourth-order compact IPNS scheme, a high-order accurate basic flow model suitable for stability analysis and transition prediction can be efficiently provided. The numerical solution of the PNS equations is based on an implicit algorithm with a shock fitting procedure in which the basic flow variables and their first and second derivatives required for the stability calculations are automatically obtained with the fourth-order accuracy. In addition, consistent with the solution of the basic flow, a fourth-order compact finite-difference scheme, which does not need higher derivatives of the basic flow, is efficiently implemented to solve the parallel-flow linear stability equations in intrinsic orthogonal coordinates. A sensitivity analysis is also conducted to evaluate the effects of numerical dissipation and grid size and also accuracy of computing the basic flow derivatives on the stability results. The present results demonstrate the efficiency and accuracy of using high-order compact solutions of the PNS schemes as basic flow models for stability and transition prediction in hypersonic flows. Moreover, indications are that high-order compact methods used for basic-flow computations are sensitive to the grid size and especially the numerical dissipation terms, and therefore, more careful attention must be kept to obtain an accurate solution of the stability and transition results.

Author(s):  
Parshwanath S. Doshi ◽  
Rajesh Ranjan ◽  
Datta V. Gaitonde

Abstract The stability characteristics of an open cavity flow at very high Mach number are examined with BiGlobal stability analysis based on the eigenvalues of the linearized Navier-Stokes equations. During linearization, all possible first-order terms are retained without any approximation, with particular emphasis on extracting the effects of compressibility on the flowfield. The method leverages sparse linear algebra and the implicitly restarted shift-invert Arnoldi algorithm to extract eigenvalues of practical physical consequence. The stability dynamics of cavity flows at four Mach numbers between 1.4 and 4 are considered at a Reynolds number of 502. The basic states are obtained through Large Eddy Simulation (LES). Frequency results from the stability analysis show good agreement when compared to the theoretical values using Rossiter’s formula. An examination of the stability modes reveals that the shear layer is increasingly decoupled from the cavity as the Mach number is increased. Additionally, the outer lobes of the Rossiter modes are observed to get stretched and tilted in the direction of the freestream. Future efforts will extend the present analysis to examine current and potential cavity flame holder configurations, which often have downstream walls inclined to the vertical.


1971 ◽  
Vol 48 (2) ◽  
pp. 365-384 ◽  
Author(s):  
C. F. Chen ◽  
R. P. Kirchner

The stability of the flow induced by an impulsively started inner cylinder in a Couette flow apparatus is investigated by using a linear stability analysis. Two approaches are taken; one is the treatment as an initial-value problem in which the time evolution of the initially distributed small random perturbations of given wavelength is monitored by numerically integrating the unsteady perturbation equations. The other is the quasi-steady approach, in which the stability of the instantaneous velocity profile of the basic flow is analyzed. With the quasi-steady approach, two stability criteria are investigated; one is the standard zero perturbation growth rate definition of stability, and the other is the momentary stability criterion in which the evolution of the basic flow velocity field is partially taken into account. In the initial-value problem approach, the predicted critical wavelengths agree remarkably well with those found experimentally. The kinetic energy of the perturbations decreases initially, reaches a minimum, then grows exponentially. By comparing with the experimental results, it may be concluded that when the perturbation kinetic energy has grown a thousand-fold, the secondary flow pattern is clearly visible. The time of intrinsic instability (the time at which perturbations first tend to grow) is about ¼ of the time required for a thousandfold increase, when the instability disks are clearly observable. With the quasi-steady approach, the critical times for marginal stability are comparable to those found using the initial-value problem approach. The predicted critical wavelengths, however, are about 1½ to 2 times larger than those observed. Both of these points are in agreement with the findings of Mahler, Schechter & Wissler (1968) treating the stability of a fluid layer with time-dependent density gradients. The zero growth rate and the momentary stability criteria give approximately the same results.


1997 ◽  
Vol 352 ◽  
pp. 265-281 ◽  
Author(s):  
A. M. H. BROOKER ◽  
J. C. PATTERSON ◽  
S. W. ARMFIELD

A non-parallel linear stability analysis which utilizes the assumptions made in the parabolized stability equations is applied to the buoyancy-driven flow in a differentially heated cavity. Numerical integration of the complete Navier–Stokes and energy equations is used to validate the non-parallel theory by introducing an oscillatory heat input at the upstream end of the boundary layer. In this way the stability properties are obtained by analysing the evolution of the resulting disturbances. The solutions show that the spatial growth rate and wavenumber are highly dependent on the transverse location and the disturbance flow quantity under consideration. The local solution to the parabolized stability equations accurately predicts the wave properties observed in the direct simulation whereas conventional parallel stability analysis overpredicts the spatial amplification and the wavenumber.


2014 ◽  
Vol 31 (12) ◽  
pp. 2795-2808 ◽  
Author(s):  
Tim Rees ◽  
Adam Monahan

Abstract The stability analysis of stratified parallel shear flows is fundamental to investigations of the onset of turbulence in atmospheric and oceanic datasets. The stability analysis is performed by considering the behavior of small-amplitude waves, which is governed by the Taylor–Goldstein (TG) equation. The TG equation is a singular second-order eigenvalue problem, whose solutions, for all but the simplest background stratification and shear profiles, must be computed numerically. Accurate numerical solutions require that particular care be taken in the vicinity of critical layers resulting from the singular nature of the equation. Here a numerical method is presented for finding unstable modes of the TG equation, which calculates eigenvalues by combining numerical solutions with analytical approximations across critical layers. The accuracy of this method is assessed by comparison to the small number of stratification and shear profiles for which analytical solutions exist. New stability results from perturbations to some of these profiles are also obtained.


Author(s):  
Sharon O MacKerrell

The stability of the flow produced over an infinite stationary plane in a fluid rotating with uniform angular velocity at an infinite distance from the plane is considered. The basic flow is an exact solution of the Navier–Stokes equations making it amenable to theoretical study. An asymptotic investigation is presented in the limit of large Reynolds number. It is shown that the stationary spiral instabilities observed experimentally can be described by a linear inviscid stability analysis. The prediction obtained for the wave angle of the disturbances is found to agree well with the available experimental and numerical results.


2001 ◽  
Vol 7 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Zhu Changsheng

On the basis of the linearized fluid forces acting on the rotor obtained directly by using the two-dimensional Navier-Stokes equations, the stability of symmetrical rotors with a cylindrical chamber partially filled with a viscous incompressible fluid is investigated in this paper. The effects of the parameters of rotor system, such as external damping ratio, fluid fill ratio, Reynolds number and mass ratio, on the unstable regions are analyzed. It is shown that for the stability analysis of fluid filled rotor systems with external damping, the effect of the fluid viscosity on the stability should be considered. When the fluid viscosity is included, the adding external damping will make the system more stable and two unstable regions may exist even if rotors are isotropic in some casIs.


2010 ◽  
Vol 649 ◽  
pp. 523-536 ◽  
Author(s):  
M. A. HERRADA ◽  
J. M. MONTANERO ◽  
C. FERRERA ◽  
A. M. GAÑÁN-CALVO

We examine the behaviour of a compound capillary jet from the spatio-temporal linear stability analysis of the Navier–Stokes equations. We map the jetting–dripping transition in the parameter space by calculating the Weber numbers for which the convective/absolute instability transition occurs. If the remaining dimensionless parameters are set, there are two critical Weber numbers that verify Brigg's pinch criterion. The region of absolute (convective) instability corresponds to Weber numbers smaller (larger) than the highest value of those two Weber numbers. The stability map is affected significantly by the presence of the outer interface, especially for compound jets with highly viscous cores, in which the outer interface may play an important role even though it is located very far from the core. Full numerical simulations of the Navier–Stokes equations confirm the predictions of the stability analysis.


Analysis ◽  
2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Isabelle Gallagher

AbstractIn these notes we present some results concerning the existence of global smooth solutions to the three-dimensional Navier–Stokes equations set in the whole space. We are particularly interested in the stability of the set of initial data giving rise to a global smooth solution.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250030
Author(s):  
SHUFANG MA ◽  
YUANGANG ZU

In this article we consider the kth-order discrete delay survival red blood cells model. The general form of the discrete dynamical system is rewritten as xn+1 = f(Pn, δn, xn, …, xn+1) where Pn, δn converge to the parametric values P and δ. We show that when the parameters are replaced by sequences, the stability results of the original system still hold.


Sign in / Sign up

Export Citation Format

Share Document