Assessment of Internal Damping in Uniaxially Stressed Metals: Exponential and Autoregressive Methods

1998 ◽  
Vol 120 (2) ◽  
pp. 177-184 ◽  
Author(s):  
A. L. Audenino ◽  
E. M. Zanetti ◽  
P. M. Calderale

When a metallic material is highly stressed, its internal specific damping capacity increases showing a nonlinear behavior. In spite of this, the most part of experimental methods employ nonhomogeneous stress fields measuring only a volumetric average, often called structural damping. To overcome this problem the procedure herein presented extends the applicability of the plain traction or compression methods to higher frequency range (up to 300 Hz). The introduced methodology corrects for elastic energy and dissipated energy relative to the test machine and to the fixtures. The experimental procedure is based on the acquisition of a decay signal when the test machine excitation force has been removed. Two different methods to extract the pattern of internal damping versus material strain have been compared: one is based on least square exponential fitting while the other employs an autoregressive model. Best results have been obtained combining the two techniques taking into account also the variation of Young’s modulus with strain. The resulting curves of the loss factor as a function of strain amplitude for three steels and two cast irons are presented.

2015 ◽  
Vol 07 (06) ◽  
pp. 1550081 ◽  
Author(s):  
Jaroslav Zapoměl ◽  
Vladimír Dekýš ◽  
Petr Ferfecki ◽  
Alžbeta Sapietová ◽  
Milan Sága ◽  
...  

Reduction of noise and vibrations is one of the major requirements put on operation of modern machines. It can be achieved by application of new materials. The ability to utilize them properly requires learning more about their mechanical properties. Vibration attenuation depends on material damping as an important factor. This paper presents the results of research in a carbon composite material focusing on its internal damping, on the measurement of the damping coefficients and on its implementation into mathematical models. The obtained results were used for investigation of suppressing lateral vibrations of a long homogeneous carbon composite bar oscillating in the resonance area. During the transient period and due to nonlinear effects, the harmonic time-varying loading excites the bar response consisting of a number of harmonic components. The specific damping capacity referred to several oscillation frequencies determined by measurement. The results were evaluated from the point of view of two simple damping theories — viscous and hysteretic. The experiments showed that internal damping of the investigated material could be considered as frequency independent. Therefore, in order to carry out simulations, the bar was represented in the computational model by an Euler beam constituted of Maxwell–Weichert theoretical material. A suitable setting of material constants enabled reaching a constant value of the damping parameters in the required frequency range. The investigated bar vibration is governed by the motion equation in which the internal damping forces depend not only on instantaneous magnitudes of the system’s kinematic parameters but also on their past history. Solution of the equations of motion was performed after its transformation into the state space in the time domain. Results of the computational simulations showed that material damping significantly reduced amplitude of the bar vibrations in the resonance area. The producers of composite materials usually provide material parameters allowing to solve various stationary problems (density, modulus of elasticity, yielding point, strength, etc.), but there is only little or almost no information concerning the data needed for carrying out dynamical or other time-dependent analyses such as internal damping coefficients, fatigue limit, etc. Therefore, determination of the hysteretic character of material damping of the investigated carbon composite material, measurement of its specific damping capacity and implementation of the frequency-independent damping into the computational model are the principal contributions of this article.


2019 ◽  
Vol 86 (9) ◽  
Author(s):  
Mansour Alturki ◽  
Rigoberto Burgueño

This paper presents a new energy dissipation system composed of multistable cosine-curved domes (CCD) connected in series. The system exhibits multiple consecutive snap-through and snap-back buckling behavior with a hysteretic response. The response of the CCDs is within the elastic regime and hence the system's original configuration is fully recoverable. Numerical studies and experimental tests were conducted on the geometric properties of the individual CCD units and their number in the system to examine the force–displacement and energy dissipation characteristics. Finite element analysis (FEA) was performed to simulate the response of the system to develop a multilinear analytical model for the hysteretic response that considers the nonlinear behavior of the system. The model was used to study the energy dissipation characteristics of the system. Experimental tests on 3D printed specimens were conducted to analyze the system and validate numerical results. Results show that the energy dissipation mainly depends on the number and the apex height-to-thickness ratio of the CCD units. The developed multilinear analytical model yields conservative yet accurate values for the dissipated energy of the system. The proposed system offered reliable high energy dissipation with a maximum loss factor value of 0.14 for a monostable (self-recoverable) system and higher for a bistable system.


Volume 1 ◽  
2004 ◽  
Author(s):  
Hongzhao Liu ◽  
Ziying Wu ◽  
Lilan Liu ◽  
Daning Yuan ◽  
Zhongming Zhang

For the high damping metal material like damping alloy, the damping capacity usually changes with the strain amplitude and frequency nonlinearly. First, to extract the pattern of the internal damping versus strain, two time-domain calculation methods are presented in this paper. One is the moving exponent method (MEM for short) based on FFT (MEM+FFT) and the other is the moving autoregressive model method (MARM). The computing accuracy of the two methods has been compared through numerical simulations. The nonlinear relation curve of loss factor versus strain is achieved by the impulse excitation experiment employing uniform stress field. Then, to extract the pattern of the internal damping versus vibrating frequency, the sine sweep-frequency excitation experiment based on the half-power bandwidth method is carried out. The resulting curve indicates that the internal damping is also a nonlinear function of frequency.


2000 ◽  
Vol 123 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Ha˚kan L. Wettergren

The paper is concerned with material and microslip damping in a rotor. The horizontal rotor is carried by anisotropic bearings, which means that the shaft feels three different frequencies, the rotational frequency and the difference and the sum of the rotational and vibrational frequencies. When material damping is studied, these three frequencies lead to three different equivalent viscous damping constants and the dissipated energy can be solved analytically. The rotor slot wedges in a turbine generator are used as an example of microslip damping. In this case the damping is nonlinear and the results are obtained through numerical simulations. The results show that these two different internal damping sources give both similarities and dissimilarities. The sign change and different magnitude of the dissipated energy running sub- or supercritical are the same. However the dissipated energy for material damping is not affected by gravity which microslip damping is.


2012 ◽  
Vol 113 (7) ◽  
pp. 716-720 ◽  
Author(s):  
S. A. Golovin
Keyword(s):  

1996 ◽  
Vol 99 (4) ◽  
pp. 2520-2520
Author(s):  
Gilbert F. Lee ◽  
Bruce Hartmann

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
M. Benatar ◽  
M. Handschuh ◽  
A. Kahraman ◽  
D. Talbot

This paper presents a set of motion transmission error data for a family of helical gears having different profile and lead modifications operated under both low-speed (quasi-static) and dynamic conditions. A power circulatory test machine is used along with encoder and accelerometer-based transmission error measurement systems to quantify motion transmission behavior within wide ranges of torque and speed. Results of these experiments indicate that the tooth modifications impact the resultant static and dynamic transmission error amplitudes significantly. A design load is shown to exist for each gear pair of different modifications where static transmission error amplitude is minimum. Forced response curves and waterfall plots are presented to demonstrate that the helical gear pairs tested act linearly with no signs of nonlinear behavior such as tooth contact separations. Furthermore, static and dynamic transmission error amplitudes are observed to be nearly proportional, suggesting that static transmission error can be employed in helical gear dynamic models as the main gear mesh excitation. The data presented here is intended to fill a void in the literature by providing means for validation of load distribution and dynamic models of helical gear pairs.


Sign in / Sign up

Export Citation Format

Share Document