Static and Dynamic Transmission Error Measurements of Helical Gear Pairs With Various Tooth Modifications

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
M. Benatar ◽  
M. Handschuh ◽  
A. Kahraman ◽  
D. Talbot

This paper presents a set of motion transmission error data for a family of helical gears having different profile and lead modifications operated under both low-speed (quasi-static) and dynamic conditions. A power circulatory test machine is used along with encoder and accelerometer-based transmission error measurement systems to quantify motion transmission behavior within wide ranges of torque and speed. Results of these experiments indicate that the tooth modifications impact the resultant static and dynamic transmission error amplitudes significantly. A design load is shown to exist for each gear pair of different modifications where static transmission error amplitude is minimum. Forced response curves and waterfall plots are presented to demonstrate that the helical gear pairs tested act linearly with no signs of nonlinear behavior such as tooth contact separations. Furthermore, static and dynamic transmission error amplitudes are observed to be nearly proportional, suggesting that static transmission error can be employed in helical gear dynamic models as the main gear mesh excitation. The data presented here is intended to fill a void in the literature by providing means for validation of load distribution and dynamic models of helical gear pairs.


Author(s):  
Ahmet Kahraman

Abstract In this paper, the dynamic behavior of a multi-mesh helical gear train is studied. The gear train consists of three helical gears, with one of the gears in mesh with the other two. An 18-degree-of-freedom dynamic model which includes transverse, torsional, axial and rotational (rocking) motions of the flexibly mounted gears is developed. Two different loading conditions are identified. For case I, the system is driven by the gear in the middle, and for case II, the system is driven by one of the gears at either end of the gear train. Gear mesh phases under each loading condition are determined. The natural modes are predicted, and effects of the helix angle and the loading condition on the natural modes are explained. The forced response, which includes dynamic mesh and bearing forces, due to the static transmission error excitation is found. Effects of loading conditions and asymmetric positioning on the response are also explored. The results suggest that the dynamic forces are lower if the number of teeth of the gear in the middle is (i) an odd number for case I type loading, and (ii) an even number for case II type loading.



2006 ◽  
Vol 129 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. K. Tamminana ◽  
A. Kahraman ◽  
S. Vijayakar

In this study, two different dynamic models, a finite-element-based deformable-body model and a simplified discrete model, are developed to predict dynamic behavior of spur gear pairs. Dynamic transmission error (DTE) and dynamic factors (DF) defined based on the gear mesh loads, tooth loads and bending stresses are computed for a number of unmodified and modified spur gears within a wide range of rotational speed for different involute contact ratios and torque values. Although similar models were proposed in the past, they were neither fully validated nor equipped to predict both DTE and different forms of DF. Accordingly, this study focuses on (i) validation of both models through an extensive set of experimental data obtained from a set of tests using spur gear having unmodified and modified tooth profiles, and (ii) establishment of a direct link between DTE and different forms of DF, especially the ones based on tooth forces and the root stresses. The predicted DF and DTE values are related to each other through simplified formulas. Impact of nonlinear behavior, such as tooth separations and jump discontinuities on DF, is also quantified.



1999 ◽  
Vol 121 (1) ◽  
pp. 112-118 ◽  
Author(s):  
A. Kahraman ◽  
G. W. Blankenship

The influence of involute contact ratio on the torsional vibration behavior of a spur gear pair is investigated experimentally by measuring the dynamic transmission error of several gear pairs using a specially designed gear test rig. Measured forced response curves are presented, and harmonic amplitudes of dynamic transmission error are compared above and below gear mesh resonances for both unmodified and modified gears having various involute contact ratio values. The influence of involute contact ratio on dynamic transmission error is quantified and a set of generalized, experimentally validated design guidelines for the proper selection of involute contact ratio to achieve quite gear systems is presented. A simplified analytical model is also proposed which accurately describes the effects of involute contact ratio on dynamic transmission error.



1993 ◽  
Vol 115 (1) ◽  
pp. 33-39 ◽  
Author(s):  
A. Kahraman

In this paper, a linear dynamic model of a helical gear pair has been developed. The model accounts for the shaft and bearing flexibilities, and the dynamic coupling among the transverse, torsional, axial and rotational (rocking) motions due to the gear mesh. The natural frequencies and the mode shapes have been predicted, and the modes which are excited by the static transmission error have been identified. The forced response due to the static transmission error has also been predicted, including the dynamic mesh and bearing forces. A parametric study has been performed to investigate the effect of the helix angle on the free and forced vibrational characteristics of the gear pair. It has been shown that the helix angle can be neglected in predicting the natural frequencies and the dynamic mesh forces. An accurate prediction of dynamic bearing forces and moments requires inclusion of the helix angle in the analysis.



Author(s):  
Ahmet Kahraman

Abstract In this paper, a linear dynamic model of a helical gear pair has. been developed. The model accounts for the shaft and bearing flexibilities, and the dynamic coupling among the transverse, torsional, axial and rotational motions because of the gear mesh. The natural frequencies and the mode shapes have been predicted, and the modes which are excited by the static transmission error have been identified. The forced response due to the static transmission error has also been predicted, including the dynamic mesh and bearing forces. A parametric study has been performed to investigate the effect of the helix angle on the free and forced vibrational characteristics of the gear pair. It has been shown that the helix angle can be neglected in predicting the natural frequencies and the dynamic mesh forces. An accurate prediction of dynamic bearing forces and moments requires inclusion of helix angle in the analysis.



2018 ◽  
Vol 167 ◽  
pp. 02013
Author(s):  
Jeonghyun Park ◽  
Changjun Seo ◽  
Kwangsuck Boo ◽  
Heungseob Kim

Gear systems are extensively employed in mechanical systems since they allow the transfer of power with a variety of gear ratios. So gears cause the inherent deflections and deformations due to the high pressure which occurs between the meshing teeth when transmit power and results in the transmission error. It is usually assumed that the transmission error and variation of the gear mesh stiffness are the dominant excitation mechanisms. Predicting the static transmission error is a necessary condition to reduce noise radiated from the gear systems. This paper aims to investigate the effect of tooth profile modifications on the transmission error of helical gear. The contact stress analysis was implemented for different roll positions to find out the most critical roll angle in view point of root flank stress. The PPTE (peak-to-peak of transmission error) is estimated at the roll angles by different loading conditions with two dimensional FEM. The optimal profile modification from the root to the tip is proposed.



1994 ◽  
Vol 116 (3) ◽  
pp. 706-712 ◽  
Author(s):  
A. Kahraman

In this paper, the dynamic behavior of a multi-mesh helical gear train has been studied. The gear train consists of three helical gears, with one of the gears in mesh with the other two. A three dimensional dynamic model which includes transverse, torsional, axial and rotational (rocking) motions of the flexibility mounted gears has been developed. Two different loading conditions have been identified. In case-I, the system is driven by the gear in the middle, and in case-II, the system is driven by one of the gears at either end of the gear train. The phase difference between the two gear meshes has been determined under each loading condition. The natural modes have been predicted, and their sensitivity to the helix angle and different loading conditions has been quantified. The forced response, which includes dynamic mesh and bearing forces, due to the static transmission error excitation has been obtained. Effects of loading conditions and asymmetric positioning on the response have also been explored.



Author(s):  
Michael Benatar ◽  
Michael Handschuh ◽  
Ahmet Kahraman ◽  
David Talbot

Abstract For a gear pair, both the contact pattern and the transmission error (TE) significantly impact durability and fatigue life. Design and manufacturing processes are often aimed at improving the contact pattern and reducing the overall TE. Other errors, such as runout and wobble, are often induced during the installation of power transmission systems, and they can alter the contact pattern and TE of an otherwise well-designed gear pair. This study provides a methodology to experimentally investigate the impact of wobble errors on the contact pattern and static transmission error (STE) of helical gears. It first provides a description of the modifications to an existing test machine. Next, it describes the gear specifications, preliminary testing matrix, data acquisition and processing procedure, as well as the experimental results obtained with regards to both the contact pattern and STE. The following are observed while describing the experimental results. For a test with no wobble and no runout, the contact pattern remains the same at every rotational position. However, by introducing even a small amount of wobble, the contact will shift from one side of the face width of the gear to the opposite side of the face width of the gear within one revolution. Introduction of wobble may increase the STE and sideband activity around gear mesh harmonics, especially as torque increases. Yet the modest increases in STE and sideband activity seen with the introduction of wobble are not enough to make definitive conclusions. The feasibility of the modified test setup has been demonstrated, and preliminary results have been presented. However, additional data collection should be completed in order to study the impact of runout and wobble on both spur and helical gear pairs with various microgeometry modifications and manufacturing errors.





Author(s):  
Yunbo Yuan ◽  
Wei Liu ◽  
Yahui Chen ◽  
Donghua Wang

Certain operating conditions such as fluctuation of the external torque to planetary gear sets can cause additional sidebands. In this paper, a mathematical model is proposed to investigate the modulation mechanisms due to a fluctuated external torque (FET), and the combined influence of such an external torque and manufacturing errors (ME) on modulation sidebands. Gear mesh interface excitations, namely gear static transmission error excitations and time-varying gear mesh stiffness, are defined in Fourier series forms. Amplitude and frequency modulations are demonstrated separately. The predicted dynamic gear mesh force spectra and radial acceleration spectra at a fixed position on ring gear are both shown to exhibit well-defined modulation sidebands. Comparing with sidebands caused by ME, more complex sidebands appear when taking both FET and ME into account. An obvious intermodulation is found around the fundamental gear mesh frequency between the FET and ME in the form of frequency modulations, however, no intermodulation in the form of amplitude modulations. Additionally, the results indicate that some of the sidebands are cancelled out in radial acceleration spectra mainly due to the effect of planet mesh phasing, especially when only amplitude modulations are present.



Sign in / Sign up

Export Citation Format

Share Document