A Dual-Mechanism Approach to the Prediction of Machining Forces, Part 2: Calibration and Validation

1995 ◽  
Vol 117 (4) ◽  
pp. 534-541 ◽  
Author(s):  
W. J. Endres ◽  
R. E. DeVor ◽  
S. G. Kapoor

The Dual-Mechanism Machining Force Model (DMMFM) developed in Part 1 of this paper is calibrated through a specially developed algorithm, then validated. The calibration results are used to study the total machining force predictive capabilities of both the traditional lumped shearing model and the DMMFM. It is shown that the Dual-Mechanism Approach contributes greatly to our ability to both physically explain the trends in the machining force data and to understand their implications. This is achieved through an interpretation of the individual rake face and clearance face forces that are predicted using the DMMFM. The interpretation is based on the relations of these rake face and clearance face forces to the process inputs resulting from their effects on the DMMFM coefficients through thermal energy generation and temperature, shear-strain level and shear-strain rate. Some implications of the knowledge of the individual rake face and clearance face forces, as predicted by the DMMFM, are also discussed.

2017 ◽  
Vol 749 ◽  
pp. 39-45 ◽  
Author(s):  
Xiao Qi Song ◽  
Yukio Takahashi ◽  
Wei Ming He ◽  
Tohru Ihara

Built-up Layer (BUL)/Built-up Edge (BUE) formed on the tool surface can be treated as a protective, thermal barrier or lubricant films especially in the extreme severe conditions when machining the metal materials, which can sustain the tool effective and wear resistance. In order to have a thorough understanding of the adhesion effect during machining, experiments have been carried out to investigate the performance and the formation mechanisms of adhering layer on the carbide tool in machining of aluminium alloys A6063, carbon steel S45C and difficult-to-cut hardened steel S45C (H-S45C). The morphology of tool adhered surface was examined by employing Scanning Electron Microscopy (SEM), the dimensions of adhering layer were measured by Laser Scanning Microscopy (LSM) and the elements on the tool were analyzed by Electron Probe Micro Analyser (EPMA), respectively. The atomic-scale cluster adhesive friction model is proposed to explain the tool-chip contact conditions, which considers the nature of the shear strain, shear strain rate and temperature distribution in the secondary deformation zone. The model is a dynamic model and the rate equation approach can be applied to estimate the formation process of adhering layer during machining. Results have shown that the adhering layer will give rise to BUL on the tool rake face and the BUE on the cutting edge and clearance face.


2009 ◽  
Vol 114 (2) ◽  
pp. 864-873 ◽  
Author(s):  
A. L. Kelly ◽  
T. Gough ◽  
B. R. Whiteside ◽  
P. D. Coates

Surfactants ◽  
2019 ◽  
pp. 400-424
Author(s):  
Bob Aveyard

Lyophobic colloidal dispersions, aggregated surfactant systems, and polymer solutions, as well as foams and emulsions, can all be deformed by weak external forces; rheology is the study of deformation and flow of materials. Various rheological quantities arising from the response of a material to shear are defined. For liquids the stress, τ‎, applied is related to the rate of deformation, that is, the shear strain rate, γ̇. For Newtonian fluids τ‎ and γ̇ are linearly related and τ‎ / γ̇ is the viscosity, η‎. Other nonlinear relationships correspond to shear thinning and shear thickening fluids and to plastic behaviour in which there is a yield stress. Viscoelastic systems exhibit both viscous and elastic properties; such behaviour is often treated using the simple Maxwell model. Some illustrative experimentally observed rheological behaviour is presented.


1974 ◽  
Vol 13 (67) ◽  
pp. 27-35 ◽  
Author(s):  
G. Holdsworth

Examination of the past and present behaviour of the Erebus Glacier tongue over the last 60 years indicates that a major calving from the tongue appears to be imminent. Calculations of the regime of the tongue indicate that bottom melt rates may exceed 1 m a−1. By successive mapping of the ice tongue between the years 1947 and 1970, longitudinal strain-rates were determined using the change in distance between a set of 15 teeth, which are a prominent marginal feature of the tongue. Assuming a flow law for ice of the form where τ is the effective shear stress and is the effective shear strain-rate, values of the exponent n = 3 and B = 1 × 108 N m−2 are determined. These are in fair agreement with published values.


1983 ◽  
Vol 29 (103) ◽  
pp. 357-373 ◽  
Author(s):  
Charles F. Raymond

AbstractNumerical calculations by finite elements show that the variation of horizontal velocity with depth in the vicinity of a symmetric, isothermal, non-slipping ice ridge deforming on a flat bed is approximately consistent with prediction from laminar flow theory except in a zone within about four ice thicknesses of the divide. Within this near-divide zone horizontal shear strain-rate is less concentrated near the bottom and downward velocity is less rapid in comparison to the flanks. The profiles over depth of horizontal and vertical velocity approach being linear and parabolic respectively. Calculations for various surface elevation profiles show these velocity profile shapes are insensitive to the ice-sheet geometry.


A yield criterion and plastic stress-strain relations are formulated for anisotropic metals deformed under conditions of plane strain. The equations are shown to be hyperbolic, the characteristics coinciding with the directions of maximum shear strain-rate. When the anisotropy is uniformly distributed, the variation of the stresses along the characteristics is expressed in terms of elliptic functions, and geometrical properties of the field of characteristics are established. The theory is applied to the problem of indentation by a flat die.


1999 ◽  
Vol 122 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Jairam Manjunathaiah ◽  
William J. Endres

A new machining process model that explicitly includes the effects of the edge hone is presented. A force balance is conducted on the lower boundary of the deformation zone leading to a machining force model. The machining force components are an explicit function of the edge radius and shear angle. An increase in edge radius leads to not only increased ploughing forces but also an increase in the chip formation forces due to an average rake angle effect. Previous attempts at assessing the ploughing components as the force intercept at zero uncut chip thickness, which attribute to the ploughing mechanism all the changes in forces that occur with changes in edge radius, are seen to be erroneous in view of this model. Calculation of shear stress on the lower boundary of the deformation zone using the new machining force model indicates that the apparent size effect when cutting with edge radiused tools is due to deformation below the tool (ploughing) and a larger chip formation component due to a lower shear angle. Increases in specific energy and shear stress are also due to shear strain and strain rate increases. A consistent material behavior model that does not vary with process input conditions like uncut chip thickness, rake angle and edge radius can be developed based on the new model. [S1087-1357(00)01302-2]


1983 ◽  
Vol 29 (103) ◽  
pp. 357-373 ◽  
Author(s):  
Charles F. Raymond

AbstractNumerical calculations by finite elements show that the variation of horizontal velocity with depth in the vicinity of a symmetric, isothermal, non-slipping ice ridge deforming on a flat bed is approximately consistent with prediction from laminar flow theory except in a zone within about four ice thicknesses of the divide. Within this near-divide zone horizontal shear strain-rate is less concentrated near the bottom and downward velocity is less rapid in comparison to the flanks. The profiles over depth of horizontal and vertical velocity approach being linear and parabolic respectively. Calculations for various surface elevation profiles show these velocity profile shapes are insensitive to the ice-sheet geometry.


1997 ◽  
Vol 3 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Siyoul Jang ◽  
John A. Tichy

Electro-Rheological (ER) fluid behavior is similar to Bingham fluid’ s. Only when the shear stress magnitude of ER fluid exceeds the yield stress, Newtonian flow results. Continuous shear strain rate equation about shear stress which simulates Bingham-like fluid shows viscosity variations. Shear yield stress is controlled by electric fields. Electric fields in circumferential direction around the journal are also changeable because of gap distance. These values make changes of spring and damping coefficients of journal bearings compared to Newtonian flow case. Implicit viscosity variation effects according to shear strain rates of fluid are included in generalized Reynolds' equation for submerged journal bearing. Fluid film pressure and perturbation pressures are solved using switch function of Elord's algorithm for cavitation boundary condition. Spring and damping coefficients are obtained for several parameters that determine the characteristics of ER fluids under a certain electric field. From these values stability region for simple rotor-bearing system is computed. It is found that there are no big differences in load capacities with the selected electric field parameters at low eccentric region and higher electric field can support more load with stability at low eccentric region.


Sign in / Sign up

Export Citation Format

Share Document