Final Report of the Key Technology Development Program for a Next-Generation High-Temperature Gas Turbine

1997 ◽  
Vol 119 (3) ◽  
pp. 617-623 ◽  
Author(s):  
M. Sato ◽  
Y. Kobayashi ◽  
H. Matsuzaki ◽  
S. Aoki ◽  
Y. Tsukuda ◽  
...  

There is a strong demand for efficient and clean power-generating systems to meet recent energy-saving requirements and environmental regulations. A combined cycle power plant is one of the best solutions to the above [1]. Tohoku Electric Power Co., Inc., and Mitsubishi Heavy Industries, Ltd., have jointly developed three key technologies for a next-generation 1500°C class gas turbine. The three key technologies consist of: (1) high-temperature low-NOx combustion system. (2) row 1 turbine vane and blade with advanced cooling schemes, and (3) advanced heat-resistant materials; (2) and (3) were verified by HTDU (High Temperature Demonstration Unit). This paper describes the results of the above-mentioned six-year joint development.

Author(s):  
M. Sato ◽  
Y. Kobayashi ◽  
H. Matsuzaki ◽  
S. Aoki ◽  
Y. Tsukuda ◽  
...  

There is a strong demand for efficient and clean power generating systems to meet recent energy saving requirements and environmental regulations. A combined cycle power plant is one of the best solutions to the above. Tohoku Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd. have jointly developed three key technologies for a next generation 1,500°C class gas turbine. The three key technologies consist of (1) high temperature low NOx combustion system, (2) row I turbine vane and blade with advanced cooling schemes, and (3) advanced heat resistant materials, verified by HTDU (High Temperature Demonstration Unit). This paper describes the results of the above mentioned 6 year joint development.


Author(s):  
M. Sato ◽  
H. Matsuzakl ◽  
T. Yamaura ◽  
S. Aoki ◽  
K. Suanaga ◽  
...  

Tohoku Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd. have begun a joint development program on key technologies for a next generation gas turbine which aims for a combined cycle efficiency over 55%. Under the program, advanced cooling technologies, better heat resistant materials and thy low NOx (DLN) combustion technologies are being developed. For verifying high temperature technologies, turbine testing is going to be performed using the HTDU (High Temperature Demonstration Unit) at Takasago Machinery Works, Mitsubishi Heavy Industries, Ltd. This paper describes the general description of the HTDU facility and plans for testing a turbine at a firing temperature of 1500°C.


Author(s):  
Eisaku Ito ◽  
Ikuo Okada ◽  
Keizo Tsukagoshi ◽  
Junichiro Masada

Global warming is being “prevented” by reducing power plant CO2 emissions. We are contributing to the overall solution by improving the gas turbine thermal efficiency for gas turbine combined cycle (GTCC). Mitsubishi Heavy Industries, Ltd. (MHI) is a participant in a national project aimed at developing 1700°C gas turbine technology. As part of this national project, selected component technologies are investigated in detail. Some technologies which have been verified through component tests have been applied to the design of the newly developed 1600°C J-type gas turbine.


Author(s):  
S. Aoki ◽  
Y. Tsukuda ◽  
E. Akita ◽  
Y. Iwasaki ◽  
R. Tomat ◽  
...  

The 701G1 50Hz Combustion Turbine continues a long line of large heavy-duty single-shaft combustion turbines by combining the proven efficient and reliable concepts of the 501F and 701F. The output of the 701G1 is 255MW with combined cycle net efficiency of over 57%. A pan of component development was conducted under the joint development program with Tohoku Electric Power Co., Inc. and a part of the design work was carried out under the cooperation with Westinghouse Electric Corporation in the U.S.A. and Fiat Avio in Italy. This gas turbine is going to be installed to “Higashi Niigata Power Plants NO.4” of Tohoku Electric Power Co., Inc. in Japan. This plant will begin commercial operation in 1999. This paper describes some design results and new technologies in designing and developing this next generation 1500°C class advanced gas turbine.


1980 ◽  
Author(s):  
R. E. Strong ◽  
D. J. Amos ◽  
K. H. Eagle ◽  
G. L. Francois

Author(s):  
K. Kano ◽  
H. Matsuzaki ◽  
K. Aoyama ◽  
S. Aoki ◽  
S. Mandai

This paper outlines the development programs of the next generation, 1500°C Class, high efficiency gas turbine. Combined cycle thermal efficiency of more than 55% (LHV) is expected to be obtained with metallic turbine components. To accomplish this, advancements must be made in the key technologies of NOx control, materials and cooling.


Author(s):  
Tim Bradley ◽  
John Marra

Siemens Energy, Inc. was awarded a contract by the U.S. Department of Energy for the first two phases of the Advanced Hydrogen Turbine Development Program. The 3-Phase, multi-year program goals are to develop an advanced syngas, hydrogen and natural gas fired gas turbine fully integrated into coal-based Integrated Gasification Combined Cycle (IGCC) plants. The program goals include demonstrating: • A 3–5% point improvement in combined cycle efficiency above the baseline, • 20–30% reduction in combined cycle capital cost • Emissions of 2 ppm NOx @ 15% O2 by 2015. Siemens is currently well into Phase 2 of the program and has made significant progress in several areas. This includes the ability to attain the 2015 Turbine Program performance goals by developing component and systems level technologies, developing and implementing validation test plans for these systems and components, performing validation testing of component technologies, and performance demonstration through system studies. Siemens and the Advanced Hydrogen Turbine Program received additional funds from the American Recovery and Reinvestment Act (ARRA) in 2010. The additional funding serves to supplement budget shortfalls in the originally planned spend rate. The development effort has focused on engine cycles, combustion technology development and testing, turbine aerodynamics/cooling, modular component technology, materials/coatings technologies and engine system integration/flexibility considerations. High pressure combustion testing continues with syngas and hydrogen fuels on a modified premixed combustor. Advanced turbine airfoil concept testing continues. Novel manufacturing techniques were developed that allow for advanced castings and faster time to market capabilities. Materials testing continues and significant improvements were made in lifing for Thermal Barrier Coatings (TBC’s) at increased temperatures over the baseline. Studies were conducted on gas turbine/IGCC plant integration, fuel dilution effects, varying air integration, plant performance and plant emissions. The results of these studies and developments provide a firm platform for completing the advanced Hydrogen Turbine technologies development in Phase 2.


1978 ◽  
Author(s):  
M. W. Horner ◽  
W. H. Day ◽  
D. P. Smith ◽  
A. Cohn

Development of water-cooled gas turbine technology was begun at General Electric in the early 1960’s, and by the early 1970’s, a small-scale turbine had been operated to temperatures of 2850 F and 16 atm, with metal temperature less than 1000 F. The Water-Cooled Turbine Development Program was begun in 1974, funded by the Electric Power Research Institute, to do preliminary design on a utility-size gas turbine using water cooling and to do basic technology development to address the problem areas. This paper presents the results of the program, including descriptions of the test hardware and data on phenomena, such as corrosion, erosion, heat transfer, and water collection. Cycle analysis results are presented for two potential combined cycle configurations: (a) one using low-Btu coal gas fuel, and (b) one using a heavy liquid fuel. Summary performance curves are given showing the effect of changes of pressure ratio and firing temperature. Methods of improving the baseline cycle and their effect on baseline performance which are judged most promising are also given on the performance curves. Turbine design features to achieve low component metal surface temperatures for increased fuels flexibility are given with particular emphasis to the first-stage nozzles and buckets. Fundamental development testing needs have been identified and programs have been put into place to bring the water-cooled turbine to a point where a full-size water-cooled turbine can be built. Descriptions of the development test facilities, task descriptions, test plans and /or test results are given for eight tasks.


Sign in / Sign up

Export Citation Format

Share Document