Advanced Hydrogen Turbine Development Update

Author(s):  
Tim Bradley ◽  
John Marra

Siemens Energy, Inc. was awarded a contract by the U.S. Department of Energy for the first two phases of the Advanced Hydrogen Turbine Development Program. The 3-Phase, multi-year program goals are to develop an advanced syngas, hydrogen and natural gas fired gas turbine fully integrated into coal-based Integrated Gasification Combined Cycle (IGCC) plants. The program goals include demonstrating: • A 3–5% point improvement in combined cycle efficiency above the baseline, • 20–30% reduction in combined cycle capital cost • Emissions of 2 ppm NOx @ 15% O2 by 2015. Siemens is currently well into Phase 2 of the program and has made significant progress in several areas. This includes the ability to attain the 2015 Turbine Program performance goals by developing component and systems level technologies, developing and implementing validation test plans for these systems and components, performing validation testing of component technologies, and performance demonstration through system studies. Siemens and the Advanced Hydrogen Turbine Program received additional funds from the American Recovery and Reinvestment Act (ARRA) in 2010. The additional funding serves to supplement budget shortfalls in the originally planned spend rate. The development effort has focused on engine cycles, combustion technology development and testing, turbine aerodynamics/cooling, modular component technology, materials/coatings technologies and engine system integration/flexibility considerations. High pressure combustion testing continues with syngas and hydrogen fuels on a modified premixed combustor. Advanced turbine airfoil concept testing continues. Novel manufacturing techniques were developed that allow for advanced castings and faster time to market capabilities. Materials testing continues and significant improvements were made in lifing for Thermal Barrier Coatings (TBC’s) at increased temperatures over the baseline. Studies were conducted on gas turbine/IGCC plant integration, fuel dilution effects, varying air integration, plant performance and plant emissions. The results of these studies and developments provide a firm platform for completing the advanced Hydrogen Turbine technologies development in Phase 2.

Author(s):  
Tim Bradley ◽  
Joseph Fadok

Siemens Energy, Inc. was awarded a contract by the U.S. Department of Energy for the first two phases of the Advanced Hydrogen Turbine Development Program. The 3-phase, multi-year program goals are to develop an advanced syngas, hydrogen and natural gas fired gas turbine fully integrated into coal-based Integrated Gasification Combined Cycle (IGCC) plants. The program goal is to demonstrate by 2010 a 2–3% point improvement in combined cycle efficiency above the baseline, 20–30% reduction in combined cycle capital cost and emissions of 2 ppm NOx @ 15% O2. The 2012 goal is for IGCC-based power with carbon capture. Furthermore, by 2015, the goal is to demonstrate a 3–5% point improvement in combined cycle efficiency above the baseline, and 2 ppm NOx @ 15% O2. Recent activities have focused on the initiation of Phase 2. This included developing component level technologies and systems required to meet the 2010 and 2015 project objectives, developing validation test plans for systems and components, performing validation testing of component technologies, and demonstrating through system studies the ability to attain the 2010 and 2015 Turbine Program performance goals. The development effort was focused on engine cycles, combustion technology development and testing, turbine aerodynamics/cooling, modular component technology, materials/coatings technologies and engine system integration/flexibility considerations. The first series of oxidation and coating compatibility testing of modified superalloys was completed. High pressure combustion testing was performed with syngas fuels on a modified premixed combustor. High pressure testing of a second premixed combustion system was also performed. Novel turbine airfoil concept testing continued. Conceptual design reviews and risk analyses were carried out on new gas turbine components. Studies were conducted on gas turbine/IGCC plant integration, fuel dilution effects, varying air integration, plant performance and plant emissions. The results of these studies and developments provide a firm platform for completing the advanced Hydrogen Turbine technologies development in Phase 2.


Author(s):  
James C. Corman ◽  
Douglas M. Todd

The integrated gasification combined cycle (IGCC) concept is gaining acceptance as the Clean Coal technology with the best potential for continued improvement in performance and continued reduction in capital cost. In large part this potential will be realized by optimizing the integration of power generation and fuel conversion subsystems and by exploiting advances in gas turbine technology. This paper discusses the impact that technology advances in the gas turbine combined cycle are having on the commercial viability of the IGCC concept. Technical innovations in such areas as coal gas combustion, plant control, and system integration will ensure that IGCC technology will continue to advance well into the future.


1997 ◽  
Vol 119 (3) ◽  
pp. 617-623 ◽  
Author(s):  
M. Sato ◽  
Y. Kobayashi ◽  
H. Matsuzaki ◽  
S. Aoki ◽  
Y. Tsukuda ◽  
...  

There is a strong demand for efficient and clean power-generating systems to meet recent energy-saving requirements and environmental regulations. A combined cycle power plant is one of the best solutions to the above [1]. Tohoku Electric Power Co., Inc., and Mitsubishi Heavy Industries, Ltd., have jointly developed three key technologies for a next-generation 1500°C class gas turbine. The three key technologies consist of: (1) high-temperature low-NOx combustion system. (2) row 1 turbine vane and blade with advanced cooling schemes, and (3) advanced heat-resistant materials; (2) and (3) were verified by HTDU (High Temperature Demonstration Unit). This paper describes the results of the above-mentioned six-year joint development.


1978 ◽  
Author(s):  
M. W. Horner ◽  
W. H. Day ◽  
D. P. Smith ◽  
A. Cohn

Development of water-cooled gas turbine technology was begun at General Electric in the early 1960’s, and by the early 1970’s, a small-scale turbine had been operated to temperatures of 2850 F and 16 atm, with metal temperature less than 1000 F. The Water-Cooled Turbine Development Program was begun in 1974, funded by the Electric Power Research Institute, to do preliminary design on a utility-size gas turbine using water cooling and to do basic technology development to address the problem areas. This paper presents the results of the program, including descriptions of the test hardware and data on phenomena, such as corrosion, erosion, heat transfer, and water collection. Cycle analysis results are presented for two potential combined cycle configurations: (a) one using low-Btu coal gas fuel, and (b) one using a heavy liquid fuel. Summary performance curves are given showing the effect of changes of pressure ratio and firing temperature. Methods of improving the baseline cycle and their effect on baseline performance which are judged most promising are also given on the performance curves. Turbine design features to achieve low component metal surface temperatures for increased fuels flexibility are given with particular emphasis to the first-stage nozzles and buckets. Fundamental development testing needs have been identified and programs have been put into place to bring the water-cooled turbine to a point where a full-size water-cooled turbine can be built. Descriptions of the development test facilities, task descriptions, test plans and /or test results are given for eight tasks.


Author(s):  
M. Sato ◽  
Y. Kobayashi ◽  
H. Matsuzaki ◽  
S. Aoki ◽  
Y. Tsukuda ◽  
...  

There is a strong demand for efficient and clean power generating systems to meet recent energy saving requirements and environmental regulations. A combined cycle power plant is one of the best solutions to the above. Tohoku Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd. have jointly developed three key technologies for a next generation 1,500°C class gas turbine. The three key technologies consist of (1) high temperature low NOx combustion system, (2) row I turbine vane and blade with advanced cooling schemes, and (3) advanced heat resistant materials, verified by HTDU (High Temperature Demonstration Unit). This paper describes the results of the above mentioned 6 year joint development.


Author(s):  
David G. Teraji

One of the most promising renewable energy concepts is the Concentrated Solar Power (CSP) tower with a hybrid combined cycle gas turbine power block. U.S. Department of Energy studies [4] indicate that this type of system can achieve greater than 60% thermal efficiency and result in a lower the levelized cost of electricity (LCOE) as compared to the CSP technology operating today. The air Brayton gas turbine part of the combined cycle system can also operate in a hybrid mode with natural gas resulting in optimizing the plant performance and making it available for fully dispatchable power output even when the solar thermal is not available. Since this concept had not been tested on a MW scale, a CSP tower hybrid gas turbine demonstration plant called Solugas was built near Seville, Spain. A 4.6 MW Mercury™ 50 gas turbine was modified to operate with a high temperature air receiver. The demonstration tests were conducted to ensure the turbine can operate over a broad range of conditions with and without solar energy. The performance and operation safety were critical test objectives. The demonstration test results were excellent and met all program objectives.


Author(s):  
P. G. LaHaye ◽  
M. R. Bary

A long term program was initiated in 1987 to develop an electric utility indirect coal-fired gas turbine combined cycle. This initial program was supported primarily by U.S. electric utility organizations and had as a purpose the experimental assessment of a ceramic heat exchanger concept applied as a high pressure gas turbine air heater developed by Hague International. The purpose of the initial phase of the development program was to determine if the ceramic materials, then available for use in the air heater, would withstand the high temperature 2200 F (1204 °C) corrosive environment produced by the combustion of coal. Also, in this initial phase, the program was intended to evaluate means of preventing the fouling of the air heater by fly ash. This experimental work was successful. A second phase of the program to build a 7-MW thermal input prototype was initiated in 1990 under the auspices of a cooperative agreement with the U.S. Department of Energy Morgantown Energy Technology Center (DOE-METC). This work was funded by a consortium of electric utilities, utility organizations, industrial organizations, state agencies, international entities, and the U.S. Department of Energy-METC. New members joined the existing Phase I Consortium to participate in funding the second phase. This second prototype phase is nearing completion and test results are to be available beginning mid-1994. A third, or demonstration phase, of the indirect-fired gas turbine program was selected under the U.S. Clean Coal Technology Program Round V. in May, 1993. This demonstration phase is currently in the planning and preliminary engineering stage. The objective of this proposed demonstration phase is to repower an existing coal-fired power plant in the Pennsylvania Electric Company system at Warren, Pennsylvania (Figure 1). This paper describes the demonstration plant, and the anticipated role of the EFCC cycle in the power generation industry, as well as the performance and economic merits of the Warren repowering concept.


Author(s):  
Hirotake Kobayashi ◽  
Tetsuo Tatsumi ◽  
Takashi Nakashima ◽  
Isashi Takehara ◽  
Yoshihiro Ichikawa

In Japan, from the point of view of energy saving and environmental protection, a 300kW Ceramic Gas Turbine (CGT) Research and Development program started in 1988 and is still continuing as a part of “the New Sunshine Project” promoted by the Ministry of International Trade and Industry (MITT). The final target of the program is to achieve 42% thermal efficiency at 1350°C of turbine inlet temperature (TIT) and to keep NOx emissions below present national regulations. Under contract to the New Energy and Industrial Technology Development Organization (NEDO), Kawasaki Heavy Industries, Ltd. (KHI) has been developing the CGT302 with Kyocera Corporation and Sumitomo Precision Products Co., Ltd. By the end of the fiscal year 1996, the CGT302 achieved 37.0% thermal efficiency at 1280°C of TIT. In 1997, TIT reached 1350°C and a durability operation for 20 hours at 1350°C was conducted successfully. Also fairly low NOx was proved at 1300°C of TIT. In January 1998, the CGT302 has achieved 37.4% thermal efficiency at 1250°C TIT. In this paper, we will describe our approaches to the target performance of the CGT302 and current status.


1988 ◽  
Vol 110 (4) ◽  
pp. 670-676
Author(s):  
R. R. Judkins ◽  
R. A. Bradley

The Advanced Research and Technology Development (AR&TD) Fossil Energy Materials Program is a multifaceted materials research and development program sponsored by the Office of Fossil Energy of the U.S. Department of Energy. The program is administered by the Office of Technical Coordination. In 1979, the Office of Fossil Energy assigned responsibilities for this program to the DOE Oak Ridge Operations Office (ORO) as the lead field office and Oak Ridge National Laboratory (ORNL) as the lead national laboratory. Technical activities on the program are divided into three research thrust areas: structural ceramic composites, alloy development and mechanical properties, and corrosion and erosion of alloys. In addition, assessments and technology transfer are included in a fourth thrust area. This paper provides information on the structure of the program and summarizes some of the major research activities.


Author(s):  
Walter W. Shelton ◽  
Robin W. Ames ◽  
Richard A. Dennis ◽  
Charles W. White ◽  
John E. Plunkett ◽  
...  

The U.S. Department of Energy’s (DOE) provides a worldwide leadership role in the development of advanced fossil fuel-based energy conversion technologies, with a focus on electric power generation with carbon capture and storage (CCS). As part of DOE’s Office of Fossil Energy, the National Energy Technology Laboratory (NETL) implements research, development, and demonstration (RD&D) programs that address the challenges of reducing greenhouse gas emissions. To meet these challenges, NETL evaluates advanced power cycles that will maximize system efficiency and performance, while minimizing CO2 emissions and the costs of CCS. NETL’s Hydrogen Turbine Program has sponsored numerous R&D projects in support of Advanced Hydrogen Turbines (AHT). Turbine systems and components targeted for development include combustor technology, materials research, enhanced cooling technology, coatings development, and more. The R&D builds on existing gas turbine technologies and is intended to develop and test the component technologies and subsystems needed to validate the ability to meet the Turbine Program goals. These technologies are key components of AHTs, which enable overall plant efficiency and cost of electricity (COE) improvements relative to an F-frame turbine-based Integrated Gasification Combined Cycle (IGCC) reference plant equipped with carbon capture (today’s state-of-the-art). This work has also provided the basis for estimating future IGCC plant performance based on a Transformational Hydrogen Turbine (THT) with a higher turbine inlet temperature, enhanced material capabilities, reduced air cooling and leakage, and higher pressure ratios than the AHT. IGCC cases from using system-level AHT and THT gas turbine models were developed for comparisons with an F-frame turbine-based IGCC reference case and for an IGCC pathway study. The IGCC pathway is presented in which the reference case (i.e. includes F-frame turbine) is sequentially-modified through the incorporation of advanced technologies. Advanced technologies are considered to be either 2nd Generation or Transformational, if they are anticipated to be ready for demonstration by 2025 and 2030, respectively. The current results included the THT, additional potential transformational technologies related to IGCC plant sections (e.g. air separation, gasification, gas cleanup, carbon capture, NOx reduction) are being considered by NETL and are topics for inclusion in future reports.


Sign in / Sign up

Export Citation Format

Share Document