Development of a Water-Cooled Gas Turbine

1978 ◽  
Author(s):  
M. W. Horner ◽  
W. H. Day ◽  
D. P. Smith ◽  
A. Cohn

Development of water-cooled gas turbine technology was begun at General Electric in the early 1960’s, and by the early 1970’s, a small-scale turbine had been operated to temperatures of 2850 F and 16 atm, with metal temperature less than 1000 F. The Water-Cooled Turbine Development Program was begun in 1974, funded by the Electric Power Research Institute, to do preliminary design on a utility-size gas turbine using water cooling and to do basic technology development to address the problem areas. This paper presents the results of the program, including descriptions of the test hardware and data on phenomena, such as corrosion, erosion, heat transfer, and water collection. Cycle analysis results are presented for two potential combined cycle configurations: (a) one using low-Btu coal gas fuel, and (b) one using a heavy liquid fuel. Summary performance curves are given showing the effect of changes of pressure ratio and firing temperature. Methods of improving the baseline cycle and their effect on baseline performance which are judged most promising are also given on the performance curves. Turbine design features to achieve low component metal surface temperatures for increased fuels flexibility are given with particular emphasis to the first-stage nozzles and buckets. Fundamental development testing needs have been identified and programs have been put into place to bring the water-cooled turbine to a point where a full-size water-cooled turbine can be built. Descriptions of the development test facilities, task descriptions, test plans and /or test results are given for eight tasks.

Author(s):  
Satoshi Hada ◽  
Masanori Yuri ◽  
Junichiro Masada ◽  
Eisaku Ito ◽  
Keizo Tsukagoshi

MHI recently developed a 1600°C class J-type gas turbine, utilizing some of the technologies developed in the National Project to promote the development of component technology for the next generation 1700°C class gas turbine. This new frame is expected to achieve higher combined cycle efficiency and will contribute to reduce CO2 emissions. The target combined cycle efficiency of the J type gas turbine will be above 61.5% (gross, ISO standard condition, LHV) and the 1on1 combined cycle output will reach 460MW for 60Hz engine and 670MW for 50Hz engine. This new engine incorporates: 1) A high pressure ratio compressor based on the advanced M501H compressor, which was verified during the M501H development in 1999 and 2001. 2) Steam cooled combustor, which has accumulated extensive experience in the MHI G engine (> 1,356,000 actual operating hours). 3) State-of-art turbine designs developed through the 1700°C gas turbine component technology development program in Japanese National Project for high temperature components. This paper discusses the technical features and the updated status of the J-type gas turbine, especially the operating condition of the J-type gas turbine in the MHI demonstration plant, T-Point. The trial operation of the first M501J gas turbine was started at T-point in February 2011 on schedule, and major milestones of the trial operation have been met. After the trial operation, the first commercial operation has taken place as scheduled under a predominantly Daily-Start-and-Stop (DSS) mode. Afterward, MHI performed the major inspection in October 2011 in order to check the mechanical condition, and confirmed that the hot parts and other parts were in sound condition.


1979 ◽  
Author(s):  
M. W. Horner ◽  
W. H. Day ◽  
D. P. Smith ◽  
A. Cohn

A continuing technology development program initiated by General Electric (GE) in the early 1960s and joined by the Electric Power Research Institute (EPRI) in 1974 is successfully resolving potential barrier problems in the development of water cooled turbines. Early work by GE Corporate Research and Development demonstrated the feasibility of closed circuit, pressurized water-cooling of stationary nozzles (vanes), and of open circuit, unpressurized water-cooling of rotating buckets (blades). A small-scale turbine was designed, fabricated, and operated at a gas temperature of 2850 F (1565 C) at 16 atm, with surface metal temperatures less than 1000 F (540 C). Early results from the EPRI sponsored Water-Cooled Gas Turbine Development Programs were presented at the 1978 Gas Turbine Conference (Report #ASME 78-GT-72). This paper reports more recent results, obtained between mid-1977 and mid-1978. Significant progress has been made in a number of areas: (a) water-cooled nozzle and bucket design and fabrication, (b) corrosion kinetics model verification and testing, (c) partially filled internal channel bucket heat transfer testing, and (d) stationary to rotating water transfer and collection testing. Results to date are encouraging with regard to the application of water-cooled turbine components to achieve improved reliability and fuels flexibility at increased turbine firing temperatures.


Author(s):  
M. W. Horner ◽  
P. E. Sabla ◽  
S. G. Kimura

The direct use of coal as a gas turbine fuel offers the opportunity to burn coal in an environmentally sound manner at a competitive cost of energy. A development program is underway to verify the feasibility of using coal water mixture to fuel an aero-derivative gas turbine. This paper presents the overall program approach, required gas turbine design modifications, and reports the results from small-scale combustor test facilities. The GE LM500 gas turbine was selected for this program because of its high efficiency and size, which is appropriate for transportation and cogeneration markets. The LM500 gas turbine power system design will be modified to accommodate coal fuel and any required emissions control devices. The design for the modified annular combustor is complete and preparations for coal fired tests of a 140 degree annular sector combustor are in progress. The combustor design and test development are being supported by a component test program with a One Nozzle Segment Combustor and a single can combustor LM500 Turbine Simulator. These test facilities are providing results on coal water mixture handling and fuel nozzle design, air staging requirements, component metal temperatures, combustor temperature performance, ash deposition rates, and emissions abatement for NOx, SOx, and particulates.


Author(s):  
Tim Bradley ◽  
John Marra

Siemens Energy, Inc. was awarded a contract by the U.S. Department of Energy for the first two phases of the Advanced Hydrogen Turbine Development Program. The 3-Phase, multi-year program goals are to develop an advanced syngas, hydrogen and natural gas fired gas turbine fully integrated into coal-based Integrated Gasification Combined Cycle (IGCC) plants. The program goals include demonstrating: • A 3–5% point improvement in combined cycle efficiency above the baseline, • 20–30% reduction in combined cycle capital cost • Emissions of 2 ppm NOx @ 15% O2 by 2015. Siemens is currently well into Phase 2 of the program and has made significant progress in several areas. This includes the ability to attain the 2015 Turbine Program performance goals by developing component and systems level technologies, developing and implementing validation test plans for these systems and components, performing validation testing of component technologies, and performance demonstration through system studies. Siemens and the Advanced Hydrogen Turbine Program received additional funds from the American Recovery and Reinvestment Act (ARRA) in 2010. The additional funding serves to supplement budget shortfalls in the originally planned spend rate. The development effort has focused on engine cycles, combustion technology development and testing, turbine aerodynamics/cooling, modular component technology, materials/coatings technologies and engine system integration/flexibility considerations. High pressure combustion testing continues with syngas and hydrogen fuels on a modified premixed combustor. Advanced turbine airfoil concept testing continues. Novel manufacturing techniques were developed that allow for advanced castings and faster time to market capabilities. Materials testing continues and significant improvements were made in lifing for Thermal Barrier Coatings (TBC’s) at increased temperatures over the baseline. Studies were conducted on gas turbine/IGCC plant integration, fuel dilution effects, varying air integration, plant performance and plant emissions. The results of these studies and developments provide a firm platform for completing the advanced Hydrogen Turbine technologies development in Phase 2.


1997 ◽  
Vol 119 (3) ◽  
pp. 617-623 ◽  
Author(s):  
M. Sato ◽  
Y. Kobayashi ◽  
H. Matsuzaki ◽  
S. Aoki ◽  
Y. Tsukuda ◽  
...  

There is a strong demand for efficient and clean power-generating systems to meet recent energy-saving requirements and environmental regulations. A combined cycle power plant is one of the best solutions to the above [1]. Tohoku Electric Power Co., Inc., and Mitsubishi Heavy Industries, Ltd., have jointly developed three key technologies for a next-generation 1500°C class gas turbine. The three key technologies consist of: (1) high-temperature low-NOx combustion system. (2) row 1 turbine vane and blade with advanced cooling schemes, and (3) advanced heat-resistant materials; (2) and (3) were verified by HTDU (High Temperature Demonstration Unit). This paper describes the results of the above-mentioned six-year joint development.


Author(s):  
M. Sato ◽  
Y. Kobayashi ◽  
H. Matsuzaki ◽  
S. Aoki ◽  
Y. Tsukuda ◽  
...  

There is a strong demand for efficient and clean power generating systems to meet recent energy saving requirements and environmental regulations. A combined cycle power plant is one of the best solutions to the above. Tohoku Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd. have jointly developed three key technologies for a next generation 1,500°C class gas turbine. The three key technologies consist of (1) high temperature low NOx combustion system, (2) row I turbine vane and blade with advanced cooling schemes, and (3) advanced heat resistant materials, verified by HTDU (High Temperature Demonstration Unit). This paper describes the results of the above mentioned 6 year joint development.


2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


Author(s):  
Hirotake Kobayashi ◽  
Tetsuo Tatsumi ◽  
Takashi Nakashima ◽  
Isashi Takehara ◽  
Yoshihiro Ichikawa

In Japan, from the point of view of energy saving and environmental protection, a 300kW Ceramic Gas Turbine (CGT) Research and Development program started in 1988 and is still continuing as a part of “the New Sunshine Project” promoted by the Ministry of International Trade and Industry (MITT). The final target of the program is to achieve 42% thermal efficiency at 1350°C of turbine inlet temperature (TIT) and to keep NOx emissions below present national regulations. Under contract to the New Energy and Industrial Technology Development Organization (NEDO), Kawasaki Heavy Industries, Ltd. (KHI) has been developing the CGT302 with Kyocera Corporation and Sumitomo Precision Products Co., Ltd. By the end of the fiscal year 1996, the CGT302 achieved 37.0% thermal efficiency at 1280°C of TIT. In 1997, TIT reached 1350°C and a durability operation for 20 hours at 1350°C was conducted successfully. Also fairly low NOx was proved at 1300°C of TIT. In January 1998, the CGT302 has achieved 37.4% thermal efficiency at 1250°C TIT. In this paper, we will describe our approaches to the target performance of the CGT302 and current status.


Author(s):  
C. P. Lea˜o ◽  
S. F. C. F. Teixeira ◽  
A. M. Silva ◽  
M. L. Nunes ◽  
L. A. S. B. Martins

In recent years, gas-turbine engines have undergone major improvements both in efficiency and cost reductions. Several inexpensive models are available in the range of 30 to 250 kWe, with electrical efficiencies already approaching 30%, due to the use of a basic air-compressor associated to an internal air pre-heater. Gas-turbine engines offer significant advantages over Diesel or IC engines, particularly when Natural Gas (NG) is used as fuel. With the current market trends toward Distributed Generation (DG) and the increased substitution of boilers by NG-fuelled cogeneration installations for CO2 emissions reduction, small-scale gas turbine units can be the ideal solution for energy systems located in urban areas. A numerical optimization method was applied to a small-scale unit delivering 100 kW of power and 0.86 kg/s of water, heated from 318 to 353K. In this academic study, the unit is based on a micro gas-turbine and includes an internal pre-heater, typical of these low pressure-ratio turbines, and an external heat recovery system. The problem was formulated as a non-linear optimisation model with the minimisation of costs subject to the physical and thermodynamic constraints. Despite difficulties in obtaining data for some of the components cost-equations, the preliminary results indicate that the optimal compressor pressure ratio is about half of the usual values found in large installations, but higher than those of the currently available micro-turbine models, while the turbine inlet temperature remains virtually unchanged.


Author(s):  
M. W. Horner ◽  
A. Caruvana

Final component and technology verification tests have been completed for application to a 2600°F rotor inlet temperature gas turbine. These tests have proven the capability of combustor, turbine hot section, and IGCC fuel systems and controls to operate in a combined cycle plant burning a coal-derived gas fuel at elevated gas turbine inlet temperatures (2600–3000°F). This paper presents recent test results and summarizes the overall progress made during the DOE-HTTT Phase II program.


Sign in / Sign up

Export Citation Format

Share Document