Measurements of the Velocity Field Downstream of an Impeller

1996 ◽  
Vol 118 (3) ◽  
pp. 602-610 ◽  
Author(s):  
Per Petersson ◽  
Magnus Larson ◽  
Lennart Jo¨nsson

The velocity field downstream of a model impeller operating in water was measured using a two-component laser doppler velocimeter. The investigation focussed on the spatial development of the mean velocity in the axial, radial, and circumferential direction, although simultaneous measurements were performed of the velocity unsteadiness from which turbulence characteristics were inferred. The measurements extended up to 12 impeller diameters downstream of the blades displaying the properties of the generated swirling jet both in the zone of flow establishment and the zone of established flow. The division between these zones was made based on similarity of the mean axial velocity profile. Integral properties of the flow such as volume and momentum flux were computed from the measured velocity profiles. The transverse spreading of the impeller jet and its development towards self-similarity were examined and compared with non-swirling jets and swirling jets generated by other means.

1970 ◽  
Vol 42 (4) ◽  
pp. 733-754 ◽  
Author(s):  
Robert H. Stewart

The mean-velocity field over monochromatic, 1·96 Hz, deep-water waves was measured by means of hot-wire anemometers for a range of wind speeds (relative to wave speed) of 0·4 to 3·0. The mean-velocity profile, over waves 0·64 cm in amplitude, was the same as that over a rough plate; that is, the mean velocity varied as the logarithm of the height above the mean-water level, except very close to the water, where the effect of the viscous sublayer became important. The wave-induced perturbation-velocity field and its associated Reynolds stresses were also measured and compared with numerical solutions of various linear equations governing shearing flow over a wavy boundary. The comparison showed that the measured velocity field was not well predicted by these theories.


1979 ◽  
Vol 44 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Ivan Fořt ◽  
Hans-Otto Möckel ◽  
Jan Drbohlav ◽  
Miroslav Hrach

Profiles of the mean velocity have been analyzed in the stream streaking from the region of rotating standard six-blade disc turbine impeller. The profiles were obtained experimentally using a hot film thermoanemometer probe. The results of the analysis is the determination of the effect of relative size of the impeller and vessel and the kinematic viscosity of the charge on three parameters of the axial profile of the mean velocity in the examined stream. No significant change of the parameter of width of the examined stream and the momentum flux in the stream has been found in the range of parameters d/D ##m <0.25; 0.50> and the Reynolds number for mixing ReM ##m <2.90 . 101; 1 . 105>. However, a significant influence has been found of ReM (at negligible effect of d/D) on the size of the hypothetical source of motion - the radius of the tangential cylindrical jet - a. The proposed phenomenological model of the turbulent stream in region of turbine impeller has been found adequate for values of ReM exceeding 1.0 . 103.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


1988 ◽  
Vol 1 (21) ◽  
pp. 33 ◽  
Author(s):  
Akio Okayasu ◽  
Tomoya Shibayama ◽  
Kiyoshi Horikawa

In order to establish a model of the vertical distribution of the undertow, laboratory experiments were performed on uniform slopes of 1/20 and 1/30. The turbulent velocity in the surf zone including the area close to the bottom was measured by using a two-component laser doppler velocimeter. The distributions of the mean Reynolds stress and the mean eddy viscosity coefficient were calculated. Based on the experimental results, a model to predict the vertical profile of the undertow was presented.


Author(s):  
Bohua Sun

Based on author's previous work [Sun, B. The Reynolds Navier-Stokes Turbulence Equations of Incompressible Flow Are Closed Rather Than Unclosed. Preprints 2018, 2018060461 (doi: 10.20944/preprints201806.0461.v1)], this paper proposed an explicit representation of velocity fluctuation and formulated the Reynolds stress tensor in terms of the mean velocity field. The proposed closed Reynolds Navier-Stokes turbulence formulations reveal that the mean vorticity is the key source of producing turbulence.


Author(s):  
J. Kulman ◽  
D. Gray ◽  
S. Sivanagere ◽  
S. Guffey

Heat transfer and flow characteristics have been determined for a single-phase rectangular loop thermosiphon. The plane of the loop was vertical, and tests were performed with in-plane tilt angles ranging from 3.6° CW to 4.2° CCW. Velocity profiles were measured in one vertical leg of the loop using both a single-component Laser Doppler Velocimeter (LDV), and a commercial Particle Image Velocimeter (PIV) system. The LDV data and PIV data were found to be in good agreement. The measured average velocities were approximately 2–2.5 cm/s at an average heating rate of 70 W, and were independent of tilt angle. Significant RMS fluctuations of 10–20% of the mean velocity were observed in the test section, in spite of the laminar or transitional Reynolds numbers (order of 700, based on the hydraulic diameter). These fluctuations have been attributed to vortex shedding from the upstream temperature probes and mitre bends, rather than to fully developed turbulence. Animations of the PIV data clearly show these large scale unsteady flow patterns. Multiple steady state flow patterns were not observed.


2020 ◽  
Vol 5 (10) ◽  
pp. 1199-1203
Author(s):  
Md. Mosharrof Hossain ◽  
Muhammed Hasnain Kabir Nayeem ◽  
Dr. Md Abu Taher Ali

In this investigation experiment was carried out in 80 mm diameter swirling pipe jet, where swirl was generated by attaching wedge-shaped helixes in the pipe. All measurements were taken at Re 5.3e4. In the plain pipe jet the potential core was found to exist up to x/D=5 but in the swirling jet there was no existence of potential core. The mean velocity profiles were found to be influenced by the presence of wedge-shaped helixes in the pipe. The velocity profiles indicated the presence of sinusoidal flow field in the radial direction existed only in the near field of the jet. This flow field died out after x/D=3 and the existence of jet flow diminished after x/D=5.


Author(s):  
Bohua Sun

This paper proposed an explicit and simple representation of velocity fluctuation and the Reynolds stress tensor in terms of the mean velocity field. The proposed turbulence equations are closed. The proposed formulations reveal that the mean vorticity is the key source of producing turbulence. It is found that there are no velocity fluctuation and turbulence if there were no vorticity. As a natural consequence, the laminar- turbulence transition condition was obtained in a rational way.


2021 ◽  
Author(s):  
Jinkwan Song ◽  
Johnathan Wilson ◽  
Jong Guen Lee

Abstract This paper presents the experimental results of a gaseous jet injected into an oscillating-air crossflow. The jet to crossflow momentum flux ratios are chosen as 19, 30 and 58, and the mean air crossflow velocities are chosen as 10m/s, 25 m/s, and 60 m/s. The crossflow is modulated at frequencies up to 280 Hz with a maximum crossflow velocity fluctuation of 30% of its mean velocity. Acetone planar laser-induced fluorescence is used to record the instantaneous jet concentration field. Three distinct regions are observed near the injection location (x/d &lt; 18); the jet core, the fast bending zone, and the fully developed plume zone. The location of the end of potential core can be determined primarily by the momentum flux ratio. Based on observations of these three regions, a set of correlations for the trajectory of maximum jet concentration is proposed for the potential core region and for the fully developed plume zone. The potential core responds quasi-steadily to the crossflow oscillation and the fluctuation of penetration of the potential core zone linearly increases with respect to the crossflow velocity fluctuation level. The jet penetration under oscillating crossflow is slightly lower than that under steady crossflow, especially when the mean crossflow velocity is low (10–25 m/s). However, the differences of trajectories between the oscillating and the steady crossflow cases become almost negligible as the mean crossflow velocity increases further. The axial decay of jet concentration under oscillating crossflow occurs at faster rate than that under steady crossflow, indicating that the oscillating air crossflow enhances the mixing between the jet and the crossflow. The vertical jet concentration profile at different axial location confirms that the main effect of crossflow modulation is enhanced mixing of jet with crossflow. However, no noticeable effect of modulation frequency of crossflow on the jet penetration is found.


Sign in / Sign up

Export Citation Format

Share Document