Mathematical Modeling and Experimental Verification of Stationary Waterjet Cleaning Process

1998 ◽  
Vol 120 (3) ◽  
pp. 571-579 ◽  
Author(s):  
M. C. Leu ◽  
P. Meng ◽  
E. S. Geskin ◽  
L. Tismeneskiy

The use of stationary waterjet for the removal of coating material from the substrate is investigated analytically and experimentally. In the analysis, the cleaning width as a function of standoff distance, water pressure, and nozzle radius is derived by considering the structure of waterjet and the cleaning mechanism. Also derived are the relations of the optimal cleaning standoff distance and maximum cleaning width to the critical cleaning standoff distance, and how the water pressure and nozzle radius affect this critical standoff distance. These derived analytical relations are verified with experimental results.

1969 ◽  
Vol 4 (1) ◽  
pp. 57-64
Author(s):  
R W T Preater

Three different assumptions are made for the behaviour of the junction between the cylindrical shell and the end closure. Comparisons of analytical and experimental results show that the inclusion of a ‘rigid’ annular ring beam at the junction of the cylider and the closure best represents the shell behaviour for a ratio of cylinder mean radius to thickness of 3–7, and enables a prediction of an optimum vessel configuration to be made. Experimental verification of this optimum design confirms the predictions. (The special use of the term ‘rigid’ is taken in this context to refer to a ring beam for which deformations of the cross-section are ignored but rigid body motion is permitted.)


2012 ◽  
Vol 629 ◽  
pp. 171-175
Author(s):  
Wen Zhong Jin ◽  
Su Fang Li ◽  
Wei Zhang

The new technology of superalloy vacuum-electromagnetic casting was developed and the feeding mathematical model melt in vacuum-electromagnetic casting was established. The availability of mathematical model was approved by the experiments of the IN100 superalloy. The experimental results indicate that the feeding capacity of melt in vacuum casting can be greatly increased by imposing the 50Hz, 60A rotating electromagnetic stirring, which can decrease the central shrinkage cavity in superalloy ingots, so the quality of the superalloy ingots can be wide-range improved.


1994 ◽  
Vol 04 (06) ◽  
pp. 1703-1706 ◽  
Author(s):  
P. CELKA

We have built an experimental setup to apply Pyragas’s [1992, 1993] control method in order to stabilize unstable periodic orbits (UPO) in Chua’s circuit. We have been able to control low period UPO embedded in the double scroll attractor. However, experimental results show that the control method is useful under some restrictions we will discuss.


Author(s):  
Yunlai Shi ◽  
Haichao Sun ◽  
Dingji Cheng ◽  
Jun Zhang ◽  
Yuyang Lin ◽  
...  

This paper presents a hybrid linear actuator using screw clamp operation principle. The actuator mainly consists of a hollow electromagnetic torque motor located between two clamping nuts, two hollow cylindrical shaped piezoelectric stacks symmetrically configured at two ends of the actuator and a feed-screw (also considered as the mover of the actuator) assembled throughout all the parts. The torque motor is symmetrically connected to two clamping nuts via two torsion coupling springs located at either end of the motor spindle. Two piezoelectric stacks can work independently to propel the opposing loads, which effectively take advantage of the anti-compression and non-tensile characteristics of piezoelectric element. The special feature of the actuator is the screw clamp mechanism, the operation of which involves intermittent rotation of two nuts (driven by the torque motor) on a feed-screw to achieve the bi-direction piezoelectric motion accumulation. Furthermore, the application of feed-screw could decrease the actuator’s sensitivity to wear, in order to realize a rigid self-locking and thus ensure the actuator’s holding capacity. A prototype was fabricated and the experimental results show that the no-load speed, maximum thrust, and peak power of the actuator were 20 mm/s, 280 N, and 1.54 W, respectively.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


2019 ◽  
Vol 18 (5-6) ◽  
pp. 1789-1802 ◽  
Author(s):  
Subir Patra ◽  
Hossain Ahmed ◽  
Mohammadsadegh Saadatzi ◽  
Sourav Banerjee

In this article, experimental verification and validation of a peridynamics-based simulation technique, called peri-elastodynamics, are presented while simulating the guided Lamb wave propagation and wave–damage interaction for ultrasonic nondestructive evaluation and structural health monitoring applications. Peri-elastodynamics is a recently developed elastodynamic computation tool where material particles are assumed to interact with the neighboring particles nonlocally, distributed within an influence zone. First, in this article, peri-elastodynamics was used to simulate the Lamb wave modes and their interactions with the damages in a three-dimensional plate-like structure, while the accuracy and the efficacy of the method were verified using the finite element simulation method (FEM). Next, the peri-elastodynamics results were validated with the experimental results, which showed that the newly developed method is more accurate and computationally cheaper than the FEM to be used for computational nondestructive evaluation and structural health monitoring. Specifically, in this work, peri-elastodynamics was used to accurately simulate the in-plane and out-of-plane symmetric and anti-symmetric guided Lamb wave modes in a pristine plate and was extended to investigate the wave–damage interaction with damage (e.g. a crack) in the plate. Experiments were designed keeping all the simulation parameters consistent. The accuracy of the proposed technique is confirmed by performing error analysis on symmetric and anti-symmetric Lamb wave modes compared to the experimental results for pristine and damaged plates.


2010 ◽  
Vol 126-128 ◽  
pp. 545-550 ◽  
Author(s):  
Wen Ji Xu ◽  
W. Wang ◽  
Xu Yue Wang ◽  
Gui Bing Pang

The drilling burr is taken as the research object. A mathematical model of electrochemical deburring (ECD) is established and the effects of main influencing factors, such as inter-electrode gap, applied voltage and deburring time, on burr height have been analyzed. The results show that the deburring time increases with the increase of initial burr height, inter-electrode gap, with the decrease of volume of electrochemical equivalent of the workpiece material, conductivity of electrolyte and applied voltage. The deburring time for various burr heights can be predicted by the mathematical model. The calculated results obtained from the mathematical model are approximately consistent with the experimental results. The results show that initial burr height h0=0.722mm is removed, and the fillet radius R=0.211mm is obtained.


Sign in / Sign up

Export Citation Format

Share Document