EXPERIMENTAL STUDY OF SURFACE ROUGHNESS AND TAPER ANGLE IN ABRASIVE WATER JET MACHINING OF 7075 ALUMINUM COMPOSITE USING RESPONSE SURFACE METHODOLOGY

2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.

2007 ◽  
Vol 329 ◽  
pp. 335-340 ◽  
Author(s):  
Yan Xia Feng ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
X.Y. Lu ◽  
Hong Tao Zhu

The surface characteristics of Si3N4 ceramics milled with abrasive waterjet milling technology is studied. The milled surface characteristics and the effect of process parameters on milled surface roughness are analyzed. The results show that the milled surface roughness ranges between 0.55 and 1.1um at the milling conditions under consideration and is changed with the change of process parameters. The milled surface roughness will be significantly decreased at the milling conditions of lower water pressure and larger lateral spacing. The effect of nozzle traverse speed on milled surface roughness is complex, but a traverse speed of 1000mm/min is the optimum speed for AWJ milling Si3N4 ceramics. The milled surface roughness first decreases then increases with an enhancement of standoff distance from 10mm to 30mm, and it also significantly decreases with the increase in abrasive mesh. Therefore, the medium standoff distance of 20mm and finer abrasive are the optimum conditions for AWJ milling Si3N4 ceramics with the process parameters under consideration.


2021 ◽  
Author(s):  
Umanath Karuppusamy ◽  
Devika D ◽  
Rashia Begum S

Abstract In the current study, the research explored the effect of the process parameters on the Titanium Alloy (Ti–6Al–4V) to improve the machining, surface and geometric characteristics of the circular cut-off profile by determining the optimum parameters for the Abrasive Water Jet Machining (AWJM). The input parameters considered are the Abrasive Flow Rate (AFR), Stand-off Distance (SoD), and Traverse Rate (TR). There are various input parameters to evaluate output parameters like Circularity, Cylindricity, and Surface Roughness (SR) of the circular cut profile. The experiments are conducted using Central Composite Design (CCD) in the Response Surface Methodology (RSM). Analysis of variance (ANOVA) is carried out to define most influenced process parameters and percentage of contribution. The RSM is used to predict the mathematical models for formulating the objective function using experimental results. RSM desirability approach is included in the method for determining optimum levels and discerning impacts on response variables of machining parameters. Confirmation tests with an optimum level of machining parameters have been completed to determine the adequacy of the RSM. In addition to that, the cutting profiles are also analysed using Scanning Electron Microscope (SEM). The Atomic Force Microscope(AFM) is often used to verify the minimum Surface Roughness of the AWJM machined surface.


Author(s):  
M. Santhanakumar ◽  
R. Adalarasan ◽  
M. Rajmohan

Abrasive waterjet was found effective in cutting materials like glass, steel and aluminium for various industrial applications. The effect of process parameters on abrasive waterjet cutting (AWJC) of Al6061/SiC/Al2O3 composite was disclosed in the present work. The cutting parameters taken for study were traverse speed, abrasive flow rate, water pressure and stand-off distance. Surface roughness, kerf width and bevel angle of cut were observed as the quality characteristics for various cutting trials. Experiments were designed using Taguchi's L18 orthogonal array and an integrated technique of principal component based response surface methodology (PC-RSM) was disclosed for designing the parameters. Significant improvements were observed in the quality characteristics obtained with optimal parameter setting identified by PC-RSM approach. Abrasive waterjet parameters like water pressure, stand-off distance and the interaction between abrasive flow rate and traverse speed were found to be influential on the quality characteristics.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2475
Author(s):  
Andrea Deaconescu ◽  
Tudor Deaconescu

Abrasive waterjet machining (AWJM) has a particularly high potential for the machining of stainless steels. One of the main optimization objectives of the machining of X2 CrNiMo 17-12-2 stainless steel is obtaining a minimal surface roughness. This entails selecting an optimum configuration of the main influencing factors of the machining process. Optimization of the machining system was achieved by intervening on four selected input quantities (traverse speed, waterjet pressure, stand-off distance, and grit size), with three set points considered for each. The effects of modifying the set-points of each input parameter on the surface roughness were studied. By means of response surface methodology (RSM) the combination of factor set points was determined that ensures a minimum roughness of the machined surface. The main benefit of RSM is the reduced time needed for experimenting.


2007 ◽  
Vol 339 ◽  
pp. 500-504 ◽  
Author(s):  
Yan Xia Feng ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Rong Guo Hou ◽  
X.Y. Lu

The machining performance of Al2O3 ceramics is studied by abrasive waterjet (AWJ) milling experiment. The machined surface characteristics and the effect of process parameters on machined surface quality are analyzed. The results showed that the nozzle traverse speed and traverse feed have a strong effect on the machined surface quality. The effect of process parameters on material volume removal rate and the milling depth is also researched. The results indicated that the material volume removal rate and the milling depth would be increased at the milling conditions of higher water pressure and bigger standoff distance. However, the milling depth will decrease at the milling conditions of higher traverse speed and higher traverse feed, and the material volume removal rate has a complex variation.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ekhaesomi A Agbonoga ◽  
Oyewole Adedipe ◽  
Uzoma G Okoro ◽  
Fidelis J Usman ◽  
Kafayat T Obanimomo ◽  
...  

This study investigated the effects of process parameters of plasma arc cutting (PAC) of low carbon steel material using analysis of variance. Three process parameters, cutting speed, cutting current and gas pressure were considered and experiments were conducted based on response surface methodology (RSM) via the box-Behnken approach. Process responses viz. surface roughness (Ra) and kerf width of cut surface were measured for each experimental run. Analysis of Variance (ANOVA) was performed to get the contribution of process parameters on responses. Cutting current has the most significant effect of 33.43% on the surface roughness and gas pressure has the most significant effect on  kerf width of  41.99% . For minimum surface roughness and minimum kerf width, process parameters were optimized using the RSM. Keywords: Cutting speed, cutting current, gas pressure,   surface roughness, kerf width


Author(s):  
Barath M ◽  
◽  
Rajesh S ◽  
Duraimurugan P ◽  
◽  
...  

The abrasive mixed waterjet was with success utilized to chop several materials together with steel, metal and glass for a spread of business applications. This work focuses on surface roughness of hybrid metal matrix composite (AA6061, Al2O3, B4C). Machining was applied by AWJM (Abrasive Waterjet Cutting) at completely different parameters Water pressure, Traverse speed, Abrasive flow and stand-off distance. The reinforced composite was analyzed exploitation FE SEM (Field Emission Scanning lepton Microscope) and distribution of reinforced was studied by AFM (Atomic Force Microscopy). For optimum results surface roughness was calculated.


Author(s):  
Naresh Babu Munuswamy ◽  
M. Nambi Krishnan

This study investigates optimal parameter setting in abrasive waterjet machining (AWJM) on aluminium alloy AA 6351, using taguchi based Grey Relational Analysis (GRA) is been reported. The water pressure, traverse speed and stand-off-distance were chosen as the process parameters in this study. An L9 orthogonal matrix array is used for the experimental plan. The performance characteristics which include surface roughness (Ra) and kerf angle (KA) are considered. The results indicate that surface roughness and kerf angle decreases, with increase in water pressure and decrease in traverse speed. Analysis of variance (ANOVA) illustrates that traverse speed is the major parameter (89.7%) for reducing surface roughness and kerf angle, followed by water pressure (5.85%) and standoff distance (2%) respectively. The confirmation results reveal that surface roughness reduced by 16% and kerf angle reduced by 47%. Furthermore, the surfaces were examined under scanning electron microscope (SEM) and atomic force microscope (AFM) for a detailed study


2019 ◽  
Vol 895 ◽  
pp. 301-306
Author(s):  
Keshav Kashyap ◽  
S. Srinivas

This study evaluates the effect of process parameters on depth of penetration and surface roughness in abrasive waterjet (AWJ) cutting of copper. Full factorial experiments are carried out on trapezoidal blocks for each of the three abrasive particle sizes used. Experimental parameters - abrasive mass flow rate, water jet pressure and traverse speed are varied at three levels. Main effects and contributions of process parameters to depth of penetration and surface roughness is calculated. From the data, it is observed that, high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in higher depth of penetration and a high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in lesser Ra value. Using experimental data a statistical model for predicting depth of penetration & surface roughness is developed. Error between experimental and statistical values are compared to validate the statistical model. The maximum DOP of 49.32mm was observed at AMFR=405.4 g/min, P=300 MPa, TS=60 mm/min, MS=60 Mesh and minimum DOP of 4.27mm was observed at AMFR=200 g/min, P=100 MPa, TS=90 mm/min, MS=80 Mesh.


Sign in / Sign up

Export Citation Format

Share Document