Robust Approximate Methods for Estimating Inelastic Fracture Parameters

1995 ◽  
Vol 117 (2) ◽  
pp. 115-123 ◽  
Author(s):  
R. Seshadri ◽  
R. K. Kizhatil

Robust approximate methods to estimate the inelastic energy release rate J, and the creep crack-growth parameter, C*, for cracked components are described in this paper. These methods use linear elastic finite element analysis in conjunction with the concepts of the generalized local stress strain (GLOSS) analysis and redistribution nodes (r-nodes), and are readily applicable to complex geometries and loadings. J-estimates obtained by the use of robust methods are found to be in good agreement with the results of elastic-plastic finite element analysis.

2007 ◽  
Vol 348-349 ◽  
pp. 85-88
Author(s):  
Vijay G. Ukadgaonker ◽  
Sunil Bhat

When a Mode I crack in soft steel body grows and reaches near the perpendicular interface of ultra strong steel body, its cohesive zone penetrates into the interface body which influences the crack tip parameter. The paper presents finite element analysis of the cohesive zone across the interface of such elastically matched but strength mismatched bodies in linear elastic regime. Parent alloy steel (ASTM 4340) body and interface maraging steel (MDN 250) body are considered for analysis. The cohesive zone is modeled in accordance with the Dugdale criterion. J integral is evaluated over the path around the interface to examine the effect of cohesive stresses on the crack tip. The results are compared vis-à-vis those obtained from the theoretical model. The two are in very good agreement with each other.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Young Hak Lee ◽  
Min Sook Kim

In posttensioned concrete members, the high local stress under the anchorage causes transverse tensile stress. Therefore, it is very important to predict the bursting force to determine appropriate reinforcement details. In the present work, the existing equations of the bursting force for the anchorage zone were evaluated and an equation for the bursting force based on finite element analysis was proposed to improve the model’s accuracy. Parametric analysis was performed considering the anchorage shape, tendon angle, and eccentric distance. The analytical results indicate that the existing equations underestimate or overestimate the bursting force. The proposed equation is able to predict the bursting force reasonably well for an anchorage zone with rectangular bearing plate, cavity, and eccentric distance.


2018 ◽  
Vol 251 ◽  
pp. 04056 ◽  
Author(s):  
Zelimkhan Khakiev ◽  
Alexander Kruglikov ◽  
Georgy Lazorenko ◽  
Anton Kasprzhitskii ◽  
Yakov Ermolov ◽  
...  

Analysis of mechanical behavior of ballast shoulder of railway track reinforced by polyurethane binding agent has been performed by the method of finite-element simulation Limitation of the model of linear-elastic properties of geocomposite has been displayed. Dependence of elasticity modulus of geocomposite on deformation value has been suggested. Influence of penetration depth of polyurethane binding agent on behavior of railway track construction under different train loads has been studied.


2017 ◽  
Vol 21 ◽  
pp. 116-121
Author(s):  
Vasile Murăraşu ◽  
Vasile Mircea Venghiac

This paper presents a synthesis of the numerical analyses regarding the method of modelling the coupling beams of structural walls. The directions of the struts and ties are established according to the results obtained after a linear-elastic finite element analysis. The results obtained after modelling using the Strut and Tie Method, with the struts and ties oriented along the diagonals of the coupling beam, coincide with the results obtained by applying the theory provided by EC8, which proves the viability of the method. This is also confirmed by the results obtained after a non-linear analysis was carried out in the LUSAS finite element environment.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Guicang Hou

A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.


2013 ◽  
Vol 315 ◽  
pp. 458-462 ◽  
Author(s):  
Mohd Sallehuddin Yusof ◽  
Z. Said ◽  
M.I. Maksud

Line profile is an important consideration in printing functional devices particularly in printing very fine line for electronic applications. Since laser machining provides the opportunity to apply extreme fine lines with different profiles where unachievable mechanically. Laser ablated printing plate are costly to produce, hence it is appropriate to investigate this within a computational framework beforehand. Therefore several designs will be investigated with different geometry as the variables using both linear elastic and non linear hyperelastic models. The results exhibits that finite element analysis serves appropriately as an exploration tool where it worked well with experimental results.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840043
Author(s):  
J. O. Yu ◽  
Y. H. Kim ◽  
Nagamachi Takuo

To eliminate the complexity of curvature extrusion process, a new extrusion method was proposed. In this study, a finite element analysis for curvature extrusion was studied to commercialize this extrusion method that creates curvature in a tilting method. When simulating an extrusion process, it is important to fix the appropriate friction coefficient and fillet value to avoid peel-out problems such that the finite element disappears. Therefore, the actual extrusion results and the simulated results were compared to find conditions that the element would not disappear. There was a good agreement between the simulation and experimental results when the coefficient friction was 0.4 and the fillet was 0.4 mm.


Sign in / Sign up

Export Citation Format

Share Document