Effects of Residual Stress on Fatigue Strength of Small-Diameter Welded Pipe Joint

1997 ◽  
Vol 119 (4) ◽  
pp. 428-434 ◽  
Author(s):  
T. Yamashita ◽  
T. Hattori ◽  
K. Iida ◽  
T. Nomoto ◽  
M. Sato

Bending fatigue tests were conducted to investigate the fatigue strength of small-diameter socket welded pipe joints. In most cases of large-diameter socket joints, a fatigue crack started from the root of the fillet weld, though the stress amplitude at the root was smaller than that at the toe of the fillet weld. Additionally, the fatigue strength was affected by the weld bead sequence. The residual stress was considered to be one of the important parameters governing fatigue strength; therefore, its effects were investigated. In several types of pipe joints, the local stress and residual stress distributions were calculated by finite element analysis. The residual stresses were compressive at the toe and tensile at the root of the socket welded joints. Based on these results, the effects of residual stresses on the fatigue strength are discussed for small-diameter welded pipe joints in the present work.

Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


Author(s):  
T. Zhang ◽  
G. Wilkowski ◽  
D. Rudland ◽  
F. Brust ◽  
H. S. Mehta ◽  
...  

The weld overlay process has been developed and applied to repair of nuclear reactor pipe girth welds for many years in BWR plants. The objectives of such repairs were to induce compressive axial residual stresses on the pipe inside surface, as well as increase the pipe thickness with a weld material that is not susceptible to stress-corrosion cracking. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe joints with weld overlay repairs. In this paper, a six-inch diameter Schedule 120 stainless steel pipe with an overlay thickness of 7.87 mm (0.31 inch) was picked as a validation case. Weld sequencing effects were thoroughly studied. The residual stresses were calculated by using thermal elasto-plastic finite-element analysis (FEA). After comparing results using different weld sequences, it was found that the calculated weld residual stresses on ID surface were very sensitive to weld sequencing in FE analyses as well as internal cooling rate. The influence of the weld sequencing was relatively secondary to the pipe distortion. An optimum (producing compressive residual stress on the ID surface) weld sequencing was obtained and applied to a 711.2 mm (28-inch) diameter pipe-to-elbow girth weld with an overlay thickness of 24.9 mm (0.98 inch) and a pipe thickness of 29.5 mm (1.16 inch).


1998 ◽  
Vol 120 (2) ◽  
pp. 157-163 ◽  
Author(s):  
M. Higuchi ◽  
A. Nakagawa ◽  
K. Iida ◽  
M. Hayashi ◽  
T. Yamauchi ◽  
...  

Four-point bending and rotating bending fatigue tests were conducted on socket-welded joints made of carbon, stainless, and Cr-Mo steels for clarification of the effects of diameter, welding pass sequence and post-weld heat treatment (PWHT) on fatigue strength. The results were evaluated quantitatively. Fatigue strength of socket-welded joints was found to strongly depend on weld pass sequences in fillet welds, this being possibly due to large change in residual stress distribution at roots and toes. The effects of residual stress were thus examined quantitatively by comparison of fatigue strength of PWHT stress-free specimens with that of as-welded specimens. By the modified Goodman’s method, the lowest S-N curve corresponding to maximum tensile residual stress and the highest S-N curve corresponding to maximum compression residual stress were obtained for different steels and diameters. Conventional S-N data of socket-welded joints were situated between these two limiting curves. Based on the lowest curve, fatigue strength reduction factors of socket-welded joints were proposed.


Author(s):  
Ali Mirzaee-Sisan ◽  
Junkan Wang

It is commonly understood that residual stresses can have significant effects on structural integrity. The extent of such influence varies and is affected by material properties, manufacturing methods and thermal history. Welded components such as pipelines are subject to complex transient temperature fields and associated thermal stresses near the welded regions. These thermal stresses are often high in magnitude and could cause localized yielding around the deposited weld metal. Because of differential thermal expansion/contraction episodes, misfits are introduced into the welded regions which in turn generate residual stresses when the structure has cooled to ambient temperature. This paper is based on a recently completed Joint Industry Project (JIP) led by DNV GL. It briefly reviews published experimental and numerical studies on residual stresses and strength-mismatched girth welds in pipelines. Several Finite Element Analysis (FEA) models of a reeling simulation have been developed including mapping an initial axial residual stress (transverse to the weld) profile onto a seamless girth-welded pipe. The initial welding residual stress distribution used for mapping was measured along the circumference of the girth welds. The predicted residual stresses after reeling simulation was subsequently compared with experimental measurements.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella ◽  
Aparna Alleshwaram ◽  
Eric Willis

Finite element weld residual stress analyses are performed to investigate the effectiveness of a newly proposed repair option for primary water stress corrosion cracking (PWSCC) in dissimilar metal welds in PWRs: Excavate and Weld Repair (EWR). Analyses are performed on a 30″ (762mm) outside diameter (OD) and 3″ (76mm) thick stainless steel pipe connected to a low alloy steel nozzle with a dissimilar metal weld (DMW). Eight EWR cases are analyzed to evaluate the sensitivities in weld residual stresses due to variations in the width and depth of the EWR, including cases with and without a thin weld cap on top of the DMW. The results demonstrate that a wide EWR that extends beyond the original width of the DMW provides the maximum residual stress benefits to the DMW, in terms of reducing the as-welded residual stresses. It is also found that the presence of the weld cap yields only marginal residual stress benefits.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yao Ren ◽  
Anna Paradowska ◽  
Bin Wang ◽  
Elvin Eren ◽  
Yin Jin Janin

This research investigated the effects of global (in other words, furnace-based) and local post weld heat treatment (PWHT) on residual stress (RS) relaxation in API 5L X65 pipe girth welds. All pipe spools were fabricated using identical pipeline production procedures for manufacturing multipass narrow gap welds. Nondestructive neutron diffraction (ND) strain scanning was carried out on girth welded pipe spools and strain-free comb samples for the determination of the lattice spacing. All residual stress measurements were carried out at the KOWARI strain scanning instrument at the Australian Nuclear Science and Technology Organization (ANSTO). Residual stresses were measured on two pipe spools in as-welded condition and two pipe spools after local and furnace PWHT. Measurements were conducted through the thickness in the weld material and adjacent parent metal starting from the weld toes. Besides, three line-scans along pipe length were made 3 mm below outer surface, at pipe wall midthickness, and 3 mm above the inner surface. PWHT was carried out for stress relief; one pipe was conventionally heat treated entirely in an enclosed furnace, and the other was locally heated by a flexible ceramic heating pad. Residual stresses measured after PWHT were at exactly the same locations as those in as-welded condition. Residual stress states of the pipe spools in as-welded condition and after PWHT were compared, and the results were presented in full stress maps. Additionally, through-thickness residual stress profiles and the results of one line scan (3 mm below outer surface) were compared with the respective residual stress profiles advised in British Standard BS 7910 “Guide to methods for assessing the acceptability of flaws in metallic structures” and the UK nuclear industry's R6 procedure. The residual stress profiles in as-welded condition were similar. With the given parameters, local PWHT has effectively reduced residual stresses in the pipe spool to such a level that it prompted the thought that local PWHT can be considered a substitute for global PWHT.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Author(s):  
Nur Syahroni ◽  
Stig Berge

Residual stress may have a significant effect on the fatigue strength of welded joints. As a non-fluctuating stress, it has an effect similar to that of the mean stress. Recently the International Association of Ship Classification Societies (IACS) has issued Common Structural Rules (CSR) for respectively tankers (IACS 2006a) and bulk carriers (IACS 2006b). The effect of mean stress in fatigue design is taken into account in both sets of rules. However, the treatment is quite different, in particular with regard to residual stress and shakedown effects. In the present paper a comparative study of fatigue design procedures of the IACS rules is reported, with emphasis on residual stress effects. Testing was carried out with longitudinal attachment welds in the as-welded condition. The initial residual stress was measured by a sectioning method using strain gages. Hot spot stress was determined experimentally by strain gauges and numerically by finite element analysis using different types of elements. Fatigue testing was carried out and SN-curves were plotted according to the relevant stress as specified by the rules. In order to investigate the shake-down effect of residual stress, testing was performed for several pre-load conditions which could be taken to represent maximum load levels in a load history. The aim of the study is to contribute towards better understanding of the effect of residual stress and shakedown on fatigue strength of welded joints.


Sign in / Sign up

Export Citation Format

Share Document