Parametric Control of Structural Vibrations via Adaptable Stiffness Dynamic Absorbers

1996 ◽  
Vol 118 (1) ◽  
pp. 41-47 ◽  
Author(s):  
J. S. Lai ◽  
K. W. Wang

An energy-based algorithm is developed for dynamic absorbers with adaptable stiffness to suppress structural vibrations via real-time parametric control actions. A controller with multi-objective fuzzy logic is created to reduce the main structure energy while constraining the total system energy. To ensure stability, an adaptive-passive supervisor is designed to provide guidelines for implementing the control law. It is proved that the system using this supervisor is globally stable in the sense that all signals involved are bounded. The performance of the controller is demonstrated on a beam example. It is shown that the structure energy level and vibration amplitude can be suppressed effectively.

1996 ◽  
Vol 118 (3) ◽  
pp. 505-509 ◽  
Author(s):  
K. W. Wang ◽  
J. S. Lai ◽  
W. K. Yu

A structural vibration control concept, using piezoelectric materials shunted with real-time adaptable electrical networks, has been investigated. The variable resistance and inductance in an external RL circuit are used as control inputs. An energy-based parametric control scheme is created to reduce the total system energy (the main structure mechanical energy plus the electrical and mechanical energies of the piezoelectric material and electrical circuit) while minimizing the energy flowing into the main structure. Stability of the closed-loop system is proved. The performance of the controller is examined through analyzing a beam example. It is shown that the structure energy level and vibration amplitude can be suppressed effectively.


1989 ◽  
Vol 111 (2) ◽  
pp. 128-137 ◽  
Author(s):  
S. Daley ◽  
K. F. Gill

A study is described that compares the performance of a self-organizing fuzzy logic control law (SOC) with that of the more traditional P + D algorithm. The multivariate problem used for the investigation is the attitude control of a flexible satellite that has significant dynamic coupling of the axes. It is demonstrated that the SOC can provide good control, requires limited process knowledge and compares favorably with the P + D algorithm.


Author(s):  
Ram Kumar ◽  
Afzal Sikander

Purpose This paper aims to suggest the parameter identification of load frequency controller in power system. Design/methodology/approach The suggested control approach is established using fuzzy logic to design a fractional order load frequency controller. A new suitable control law is developed using fuzzy logic, and based on this developed control law, the unknown parameters of the fractional order proportional integral derivative (FOPID) controller are derived using an optimization technique, which is being used by minimizing the integral square error. In addition, to confirm the effectiveness of the proposed control design approach, numerous simulation tests were carried out on an actual single-area power system. Findings The obtained results reveal the superiority of the suggested controller as compared to the recently developed controllers with regard to time response specifications and quantifiable indicators. Additionally, the potential of the suggested controller is also observed by improving the load disturbance rejections under plant parametric uncertainty. Originality/value To the best of the authors’ knowledge, the work is not published anywhere else.


Author(s):  
Thomas A. Bean ◽  
Akira Okamoto ◽  
John R. Canning ◽  
Dean B. Edwards

This paper presents an optimized nonlinear fuzzy logic controller designed for an autonomous surface craft and describes the process by which it was found. The nonlinear fuzzy logic controller described herein was developed to maintain the linear feedback control of an optimal set of controller gains when the state is near the operating point. The simplex optimization method was utilized to find the optimal fuzzy logic parameters that define the shape of the control law away from the normal operating point. The resultant controller showed approximately a 20% improvement over the optimal linear controller.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3673 ◽  
Author(s):  
Nur Ahmad

Motion control involving DC motors requires a closed-loop system with a suitable compensator if tracking performance with high precision is desired. In the case where structural model errors of the motors are more dominating than the effects from noise disturbances, accurate system modelling will be a considerable aid in synthesizing the compensator. The focus of this paper is on enhancing the tracking performance of a wheeled mobile robot (WMR), which is driven by two DC motors that are subject to model parametric uncertainties and uncertain deadzones. For the system at hand, the uncertain nonlinear perturbations are greatly induced by the time-varying power supply, followed by behaviour of motion and speed. In this work, the system is firstly modelled, where correlations between the model parameters and different input datasets as well as voltage supply are obtained via polynomial regressions. A robust H ∞ -fuzzy logic approach is then proposed to treat the issues due to the aforementioned perturbations. Via the proposed strategy, the H ∞ controller and the fuzzy logic (FL) compensator work in tandem to ensure the control law is robust against the model uncertainties. The proposed technique was validated via several real-time experiments, which showed that the speed and path tracking performance can be considerably enhanced when compared with the results via the H ∞ controller alone, and the H ∞ with the FL compensator, but without the presence of the robust control law.


Robotica ◽  
1993 ◽  
Vol 11 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Yueh-Jaw Lin ◽  
Tian-Soon Lee

SUMMARYIn this paper a control law, which consists of a fuzzy logic controller plus a nonlinear effects negotiator for a flexible robot manipulator, is presented. The nonlinear effects negotiator is used to enhence the control system's ability in dealing with the uncertainty of the mathematical model. The control algorithm is simple and easy to tune as opposed to conventional control law which requires time consuming gains selections. To obtain fuzzy control rules, an error response plane method is proposed.


2004 ◽  
Vol 10 (10) ◽  
pp. 1415-1440 ◽  
Author(s):  
Anthony Green ◽  
Jurek Z. Sasiadek

Operational problems with robot manipulators in space relate to several factors, most importantly, structural flexibility and subsequent difficulties with their position control. In this paper we present control methods for endpoint tracking of a 12.6 × 12.6m2 trajectory by a two-link robot manipulator. Initially, a manipulator with rigid links is modeled using inverse dynamics, a linear quadratic regulator and fuzzy logic schemes actuated by a Jacobian transpose control law computed using dominant cantilever and pinned-pinned assumed mode frequencies. The inverse dynamics model is pursued further to study a manipulator with flexible links where nonlinear rigid-link dynamics are coupled with dominant assumed modes for cantilever and pinned-pinned beams. A time delay in the feedback control loop represents elastic wave travel time along the links to generate non-minimum phase response. A time delay acting on control commands ameliorates non-minimum phase response. Finally, a fuzzy logic system outputs a variable to adapt the control law in response to elastic deformation inputs. Results show greater endpoint position control accuracy using a flexible inverse dynamics robot model combined with a fuzzy logic adapted control law and time delays than could be obtained for the rigid dynamics models.


2006 ◽  
Vol 17 (12) ◽  
pp. 1703-1715 ◽  
Author(s):  
ALBERTO PETRI ◽  
M. J. DE OLIVEIRA

We investigate the thermal quench of Ising and Potts models via Monte Carlo dynamics. We find that the local distribution of the site-site interaction energy has the same form as in the equilibrium case, a result that allows us to define an instantaneous temperature θ during the systems relaxation. We also find that, after an undercritical quench, θ equals the heat bath temperature in a finite time, while the total system energy is still decreasing due to the coarsening process.


Sign in / Sign up

Export Citation Format

Share Document