Sliding Inclusions and Inhomogeneities With Frictional Interfaces

1992 ◽  
Vol 59 (4) ◽  
pp. 783-788 ◽  
Author(s):  
R. Furuhashi ◽  
Jin H. Huang ◽  
T. Mura

Elastic fields due to a sliding inclusion and inhomogeneity with the frictional interface are investigated. The exact solution in closed form is presented for three cases: (i) a spherical inclusion which undergoes constant eigenstrains, (ii) a nondegenerate ellipsoidal inclusion with uniform shear eigenstrains and (iii) a nondegenerate ellipsoidal inhomogeneity subjected to an applied shear stress at infinity. Moreover, the existence of solution for a sliding inclusion and inhomogeneity with frictional interface is also demonstrated.

1997 ◽  
Vol 64 (3) ◽  
pp. 471-479 ◽  
Author(s):  
I. Jasiuk ◽  
P. Y. Sheng ◽  
E. Tsuchida

We find the elastic fields in a half-space (matrix) having a spherical inclusion and subjected to either a remote shear stress parallel to its traction-free boundary or to a uniform shear transformation strain (eigenstrain) in the inclusion. The inclusion has distinct properties from those of the matrix, and the interface between the inclusion and the surrounding matrix is either perfectly bonded or is allowed to slip without friction. We obtain an analytical solution to this problem using displacement potentials in the forms of infinite integrals and infinite series. We include numerical examples which give the local elastic fields due to the inclusion and the traction-free surface.


1997 ◽  
Vol 64 (3) ◽  
pp. 495-502 ◽  
Author(s):  
H. Nozaki ◽  
M. Taya

In this paper the elastic fields in an arbitrary, convex polygon-shaped inclusion with uniform eigenstrains are investigated under the condition of plane strain. Closed-form solutions are obtained for the elastic fields in a polygon-shaped inclusion. The applications to the evaluation of the effective elastic properties of composite materials with polygon-shaped reinforcements are also investigated for both dilute and dense systems. Numerical examples are presented for the strain field, strain energy, and stiffness of the composites with polygon shaped fibers. The results are also compared with some existing solutions.


1956 ◽  
Vol 23 (2) ◽  
pp. 284-286
Author(s):  
J. N. Goodier ◽  
W. E. Jahsman

Abstract Detailed results are found for two plane-stress problems of an elastic plate with a hole from which a symmetrical disturbance is propagated. In the first a uniform shear stress is suddenly applied and maintained at the hole. In the second a uniform (rotary) velocity is suddenly applied and maintained. The subsequent motion is entirely rotary and involves shear stress only. The problems are mathematically analogous to those of symmetrical pressure and radial velocity at the hole, already solved by Kromm, and his analysis is followed. The existence of a similar analogy in the statical cases is well known.


Author(s):  
Vincent Monchiet ◽  
Guy Bonnet

In this paper, the derivation of irreducible bases for a class of isotropic 2 n th-order tensors having particular ‘minor symmetries’ is presented. The methodology used for obtaining these bases consists of extending the concept of deviatoric and spherical parts, commonly used for second-order tensors, to the case of an n th-order tensor. It is shown that these bases are useful for effecting the classical tensorial operations and especially the inversion of a 2 n th-order tensor. Finally, the formalism introduced in this study is applied for obtaining the closed-form expression of the strain field within a spherical inclusion embedded in an infinite elastic matrix and subjected to linear or quadratic polynomial remote strain fields.


Blood ◽  
1992 ◽  
Vol 80 (9) ◽  
pp. 2374-2378
Author(s):  
T Sugihara ◽  
RP Hebbel

An abnormal susceptibility of the sickle red blood cell (RBC) membrane to deformation could compromise its permeability barrier function and contribute to the exuberant cation leakiness occurring during the sickling phenomenon. We examined this hypothesis by subjecting RBCs at ambient oxygen tension to elliptical deformation, applying shear stress in a viscous medium under physiologic conditions. Compared with normal and high-reticulocyte control RBCs, sickle RBCs manifest an exaggerated K leak response to deformation. This leak is fully reversible, is both Cl and Ca independent, and at pHe 7.4 is fully balanced so that Kefflux equals Nainflux. This abnormal susceptibility is also evident in that the K leak in response to deformation occurs at an applied shear stress of only 141 dyne/cm2 for sickle RBCs, as compared to 204 dyne/cm2 for normal RBCs. Fresh sickle RBC membranes contain elevated amounts of lipid hydroperoxide, the presence of which is believed to provide the biochemical basis for enhanced deformation susceptibility. When examined at pHe 6.8, oxygenated sickle RBCs acquire an additional, unbalanced (Kefflux > Nainflux) component to the K leak increment specifically ascribable to deformation. Studies with inhibitors suggest that this additional component is not caused by a known leak pathway (eg, either K:Cl cotransport or the Gardos channel). This abnormal susceptibility of the sickle membrane to development of cation leakiness during deformation probably contributes to the exuberant cation leak taking place during RBC sickling.


1986 ◽  
Vol 53 (1) ◽  
pp. 103-107 ◽  
Author(s):  
E. Tsuchida ◽  
T. Mura ◽  
J. Dundurs

The paper analyzes the elastic fields caused by an elliptic inclusion which undergoes a uniform expansion. The interface between the inclusion and the matrix cannot sustain shear tractions and is free to slip. Papkovich–Neuber displacement potentials are used to solve the problem. In contrast to the perfectly bonded interface, the solution cannot be expressed in closed form and involves infinite series. The results are illustrated by numerical examples.


1999 ◽  
Vol 66 (4) ◽  
pp. 879-884 ◽  
Author(s):  
B. Wang ◽  
Q. Sun ◽  
Z. Xiao

In this paper, the dynamic effect was incorporated into the initiation and propagation process of a transformation inclusion. Based on the time-varying propagation equation of a spherical transformation inclusion with pure dilatational eigenstrain, the dynamic elastic fields both inside and outside the inclusion were derived explicitly, and it is found that when the transformation region expands at a constant speed, the strain field inside the inclusion is time-independent and uniform for uniform eigenstrain. Following the basic ideas of crack propagation problems in dynamic fracture mechanics, the reduction rate of the mechanical part of the free energy accompanying the growth of the transformation inclusion was derived as the driving force for the move of the interface. Then the equation to determine the propagation speed was established. It is found that there exists a steady speed for the growth of the transformation inclusion when time is approaching infinity. Finally the relation between the steady speed and the applied hydrostatic stress was derived explicitly.


Sign in / Sign up

Export Citation Format

Share Document